ISO15552 Cylinders

$\varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100, \varnothing 125$

- CNOMO and circular grooves are on all four sides.
- Switch can be slid in.
- Reduced weight due to a change in the configuration of the cover
- Small sized D-M9 \square auto switch mountable

Profile Design ISO Cylinder Series CP96

ISO Cylinder
Series C96

New Non-rotating Rod Type, Smooth Cylinder Added!

C95/C96 Weight Comparison

Series Variations

Profile Design ISO Cylinder Series CPG6
 $ø 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100, \varnothing 125$

Profile design with enclosed tie-rods

Variations

Profile Design ISO Cylinder

Series CP96

Improved end of stroke cushion capacity

Piston rod lurching has been eliminated at the end of stroke positions by means of a floating seal mechanism.

New
Standard type with rod

Piston rod deflection reduced

Deflection of the piston rod has been reduced by increasing the precision of the bushing and piston rod and reducing the tolerances.

Non-rotating

accuracy	(mm)
Bore size	θ
$\varnothing 32$ to $\varnothing 63$	$\pm 0.5^{\circ}$
$\varnothing 80, \varnothing 100$	$\pm 0.3^{\circ}$

Air cylinder

 Compact and light designReduced weight due to a change in the configuration of the cover.

Improved mounting accuracy

High accuracy covers and tie rod nuts simplify the mounting process and also extend cylinder life.

[Differences between the C95 and the CP95 series]

(3) Tie-rod nuts changed to conform to the ISO 15552 standard (ø80 to $\varnothing 125$)
(4) Surface treatment painting is now avoided due to environmental concerns. Coating trivalent chromate only.

5 Uses an iron-based sintered material for the bushing ($\varnothing 32$ to $\varnothing 100$)

ø32, ø40, ø50, ø63, ø80, ø100, ø125

Port aperture

Auto Switch Mounting

\square Switch can be slid in for mounting.
(Switch spacer and switch mounting bracket are required for the CP95.)
\square SMC groove for M9, A9 switches and CNOMO groove are on all four sides.
Max. four sides, Slide-in mountable

Switch mounting surface

Simple end of stroke cushion valve adjustment

Since the adjustment of the cushion valve is performed with a hex wrench key, even finite control can be easily accomplished.
Furthermore, the cushion valve has been recessed so that it does not protrude from the cover.

New Made to Order added!

Improvement in applications by made to order specifications.

Symbol	Specifications	Standard type		Non-rotating rod type		Smooth cylinder
		Single rod	Double rod	Single rod	Double rod	
-XA \square	Change of rod end shape	\bigcirc	\bigcirc	-	-	-
-XB6	Heat resistant cylinder (-10 to $150^{\circ} \mathrm{C}$)	\bigcirc	\bigcirc	-	-	-
-XC4	With heavy duty scraper	\bigcirc	\bigcirc	-	-	-
-XC7	Tie-rod, cushion valve, tie-rod nut, etc. made of stainless steel	\bigcirc	\bigcirc	-	-	-
-XC10	Dual stroke cylinder/Double rod type	\bigcirc	-	-	-	-
-XC11	Dual stroke cylinder/Single rod type	\bigcirc	-	-	-	-
-XC22	Fluororubber seals	\bigcirc	\bigcirc	-	-	-
-XC35	With coil scraper	\bigcirc	\bigcirc	-	-	-
-XC68	Made of stainless steel (With hard chrome plated piston rod)	\bigcirc	\bigcirc	-	-	-

Switch can be slid in.

ISO Cylinder: Standard
 Double Acting, Single/Double Rod Series CP96 $\varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100, \varnothing 125$

How to Order

Applicable Auto Switches/Tie-rod Mounting

Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model	Lead wire length (m)				Pre-wired connector	Applicable load	
						DC	AC		$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 1 \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$			
C 0		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC	Relay, PLC
	-			3-wire (PNP)				M9P	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		M9B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	Diagnosis	Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC	
	indication			3-wire (PNP)				M9PW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	(2-color)			2-wire		12 V		M9BW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	Water resistant (2-color)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NA**	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC	
				3-wire (PNP)				M9PA**	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		M9BA**	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	-	Grommet	Yes	3-wire (Equiv. to NPN)	-	5 V	-	A96	\bigcirc	-	\bigcirc	-	-	IC	-
				2-wire	24 V	12 V	100 V	A93	\bigcirc	-	\bigcirc	-	-	-	Relay, PLC
			None				100 V or less	A90	\bigcirc	-	\bigcirc	-	-	IC	

* Lead wire length symbols: 0.5 m Nil (Example) M9NW
* Solid state switches marked with "○" are produced upon receipt of order.
$1 \mathrm{~m}$. M (Example) M9NWM
$3 \mathrm{~m}$. L (Example) M9NWL
$5 \mathrm{~m}$. Z (Example) M9NWZ
* Since there are other applicable auto switches than listed, refer to pages 1263 to 1371 in Best Pneumatics No.2.
* For details about auto switches with pre-wired connector, refer to pages 1328 and 1329 in Best Pneumatics No.2.
* D-A9■, M9■, M9■W, M9 \square AL are shipped together, (but not assembled).
(Switch mounting bracket is only assembled at the time of shipment.)
** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
Consult with SMC regarding water resistant types with the above model numbers.
Note) D-Y59A, Y69A, Y7P, Y7 $\square \mathrm{W}, \mathrm{Z7} \square$, Z80 type cannot be mounted on the CP96 series.
Moreover, D-M9 \square and A9 type cannot be mounted on square groove of the CP96 series.

ISO Cylinder: Standard Series CP96

Accessories

Cylinder Mounting Accessories

Piston Rod Mounting Accessories

	$\begin{array}{l\|l} \text { GKM } & \begin{array}{l} \text { Rod clevis } \\ \text { (ISO 8140) } \end{array} \end{array}$	KJ $\begin{aligned} & \text { Piston rod ball joint } \\ & \text { (ISO 8139) }\end{aligned}$	JA Floating joint
$\begin{aligned} & \text { Bore } \\ & \text { size } \\ & (\mathrm{mm}) \end{aligned}$	Page 14 for dimensions. Supplied with bolt and safety device.	Page 14 for dimensions.	Page 14 for dimensions.
32	GKM10-20	KJ10DM10X1.25	JA30-10-125
40	GKM12-24	KJ12D	JA40-12-125
50	GKM16-32	KJ16D	JA50-16-150
63	GKM16-32	KJ16D	JA50-16-150
80	GKM20-40	KJ20D	JAH50-20-150
100	GKM20-40	KJ20D	JAH50-20-150
125	GKM27-54	KJ27D	JA125-27-200

Specifications

Bore size (mm)	32	40	50	63	80	100	125
Action	Double acting						
Fluid	Air						
Proof pressure	1.5 MPa						
Max. operating pressure	1.0 MPa						
Min. operating pressure	0.05 MPa						
Ambient and fluid temperature	Without auto switch: -20 to $70^{\circ} \mathrm{C}$ * With auto switch: -10 to $60^{\circ} \mathrm{C}^{*}$						
Lubrication	Not required (Non-lube)						
Operating piston speed	50 to $1000 \mathrm{~mm} / \mathrm{s}$						50 to $700 \mathrm{~mm} / \mathrm{s}$
Allowable stroke tolerance	Up to 250 st: ${ }_{0}^{+1.0}, 251$ to 1000 st: ${ }^{+1.4} 0_{0}, 1001$ to 1500 st: ${ }_{0}^{+1.8}, 1501$ to 2000 st: ${ }_{0}^{+2.2}$						
Cushion	Both ends (Air cushion)						
Port size	G 1/8	G 1/4	G 1/4	G 3/8	G 3/8	G 1/2	G 1/2
Mounting	Basic, Axial foot, Rod end flange, Head end flange, Single clevis, Double clevis, Center trunnion						

Minimum Stroke for
Auto Switch Mounting
Refer to page 19 for "Minimum Stroke for Auto Switch Mounting".

	Made to Order Specifications (For details, refer to pages 51 to 58.)
Symbol	Specifications
-XA \square	Change of rod end shape
-XB6	Heat resistant cylinder ($150^{\circ} \mathrm{C}$)
-XC4	With heavy duty scraper
-XC7	Tie rod, cushion valve, tie rod nut, etc. made of stainless steel
-XC10	Dual stroke cylinder/Double rod
-XC11	Dual stroke cylinder/Single rod
-XC22	Fluororubber seals
-XC35	With coil scraper
-XC68	Made of stainless steel. (With hard chronium plated piston rod)

Standard Stroke

Bore size (mm)	Standard stroke (mm)	Max. stroke*	
	$25,50,80,100,125,160,200,250,320,400,500$	Single rod	Double rod
40	$25,50,80,100,125,160,200,250,320,400,500$	2000	
50	$25,50,80,100,125,160,200,250,320,400,500,600$	2000	
63	$25,50,80,100,125,160,200,250,320,400,500,600$	2000	1000
80	$25,50,80,100,125,160,200,250,320,400,500,600,700,800$	2000	
100	$25,50,80,100,125,160,200,250,320,400,500,600,700,800$	2000	
125	-	2000	

Intermediate strokes are available.

* Please consult with SMC for longer strokes.
* $\varnothing 125$ and Double rod are produced upon receipt of order.

Accessories

Mounting		Basic	Foot	Rod end flange	Head end flange	Single clevis	Double clevis	Center trunnion
Standard	Rod end nut	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
	Clevis pin	-	-	-	-	-	\bigcirc	-
Option	Piston rod ball joint	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
	Rod clevis	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
	Rod boot	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-

* Please do not use a piston rod ball joint (or floating joint) together with a head end clevis with a ball joint (or angled head end clevis with a ball joint).

Theoretical Output

\rightarrow OUT

- IN

Bore size (mm)	Rod diameter (mm)	Operating direction	Piston area (mm^{2})	Operating pressure (MPa)								
				0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
32	12	OUT	804	161	241	322	402	482	563	643	724	804
		IN	691	138	207	276	346	415	484	553	622	691
40	16	OUT	1257	251	377	503	629	754	880	1006	1131	1257
		IN	1056	211	317	422	528	634	739	845	950	1056
50	20	OUT	1963	393	589	785	982	1178	1374	1570	1767	1963
		IN	1649	330	495	660	825	989	1154	1319	1484	1649
63	20	OUT	3117	623	935	1247	1559	1870	2182	2494	2805	3117
		IN	2803	561	841	1121	1402	1682	1962	2242	2523	2803
80	25	OUT	5027	1005	1508	2011	2514	3016	3519	4022	4524	5027
		IN	4536	907	1361	1814	2268	2722	3175	3629	4082	4536
100	25	OUT	7854	1571	2356	3142	3927	4712	5498	6283	7068	7854
		IN	7363	1473	2209	2945	3682	4418	5154	5890	6627	7363
125	32	OUT	12272	2454	3682	4909	6136	7363	8590	9817	11045	12272
		IN	11468	2294	3440	4587	5734	6881	8027	9174	10321	11468

Note) Theoretical out put $(\mathrm{N})=$ Pressure $(\mathrm{MPa}) \times$ Piston area $\left(\mathrm{mm}^{2}\right)$

Weight (Single rod)

Bore size (mm)		32	40	50	63	80	100	125
Basic Weight	Basic	0.55	0.84	1.36	1.77	2.84	3.77	6.82
	Foot	0.16	0.20	0.38	0.46	0.89	1.09	2.60
	Flange	0.20	0.23	0.47	0.58	1.30	1.81	4.10
	Single clevis	0.16	0.23	0.37	0.60	1.07	1.73	4.15
	Double clevis	0.20	0.32	0.45	0.71	1.28	2.11	4.25
	Trunnion	0.71	1.10	1.73	2.48	4.25	5.95	2.98
Additional Weight per each 50 mm stroke	All mounting brackets	0.14	0.18	0.30	0.32	0.49	0.54	0.84
Accessory	Single rod clevis	0.07	0.11	0.22		0.40		1.20
	Double rod clevis	0.09	0.15	0.34		0.69		1.84

Calculation: (Example) CP96SD40-100

- Basic Weight $0.84(\mathrm{~kg})$ (Basic, ø40) •Mounting 0.32 (kg) (Double clevis)
- Additional Weight 0.18 (kg/50 st)
- Cylinder stroke 100 (st)
$0.84+0.18 \times 100 \div 50+0.32=1.52 \mathrm{~kg}$

Allowable Kinetic Energy

Example: Load limit at rod end when air cylinder $ø 63$ is actuated with max. actuating speed $500 \mathrm{~mm} / \mathrm{s}$. See the intersection of lateral axis $500 \mathrm{~mm} / \mathrm{s}$ and $ø 63$ line, and extend the intersection to left. Thus, the allowable load is 80 kg .

Series CP96

Construction

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Rod cover	Aluminum die-casted	
2	Head cover	Aluminum die-casted	
$\mathbf{3}$	Cylinder tube	Aluminum alloy	
4	Piston rod	Carbon steel	
5	Piston	Aluminum alloy	
6	Cushion ring	Aluminum alloy	
7	Tie-rod	Carbon steel	
8	Tie-rod nut	Steel	
9	Flat washer	Steel	$\varnothing 80$ and $\varnothing 100$
10	Rod end nut	Steel	
11	Cushion valve	Steel wire	
12	Bushing	Bearing alloy	
13	Snap ring	Steel for spring	$\varnothing 40$ to ø125
14	Rod seal holder	Stainless steel	$\varnothing 125$
15	Snap ring	Steel for spring	$\varnothing 125$
16	Cushion seal	Urethane rubber	
17	Wearing	Resin	
18	Piston seal	NBR	
19	Rod seal	NBR	
20	Cylinder tube gasket	NBR	
21	Cushion valve seal	NBR	
22	Piston gasket	NBR	
23	Magnet		

Replacement Parts: Seal Kit/Single rod

Bore size (mm)	Kit no.	Contents
$\mathbf{3 2}$	CS95-32	
$\mathbf{4 0}$	CS95-40	
$\mathbf{5 0}$	CS95-50	Kits include items
$\mathbf{6 3}$	CS95-63	
$\mathbf{8 0}$	CS95-80 to (20).	
$\mathbf{1 0 0}$	CS96-100	
$\mathbf{1 2 5}$	CS96-125	

* Seal kits consist of items (16) to (20) contained in one kit, and can be orderd using the number for each respective tube bore size.

Seal Kit/Double rod

Bore size (mm)	Kit no.	Contents
32	CS95W-32	Kits include items (16) and (18) to (20)
40	CS95W-40	
50	CS95W-50	
63	CS95W-63	
80	CS95W-80	
100	CS96W-100	
125	CS96W-125	

ISO Cylinder: Standard Double Acting, Single/Double Rod

CP96S(D)B Bore size-Stroke

With rod boot

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke Range(mm)				A	$\begin{array}{\|c\|} \hline \varnothing B \\ \text { d11 } \end{array}$		øD	EE		PL	RT			L12	KK			SW	G	BG	L8	VD	VA	WA	WB			ZZ	E	R		
	Without rod boot		With	rod boo							2																						
32	to 2000		to 1000		22	30			12			1/8 1	13		6×1		6	M10	$\times 1$.		10	32	16	94	4	4	4	7		261	146	47	32.5
40	to 2000		to 1000		24	35		16		1/4 1	14		6×1		6.5	M1	$\times 1$.		13	37.5	16	105	4	4	5	9		3016	163	54	38		
50	to 2000		to 1000		32	40		20		1/4 1	15.5	M8	$\times 1.2$		8		6×1		17	37.5	16	106	4	4	6	10	10.5	371	179	66	46.5		
63	to 2000		to 1000		32	45		20		3/8 1	16.5	M8	x 1.2		8		6×1		17	45	16	121	4	4	9	12		3719	194	77	56.5		
80	to 2000		to 1000		40	45		25		3/8 1	19	M10	0×1	. 5	10	M2	0×1		22	45	17	128	4	4	11.5	514		462	218	99	72		
100	to 2000		to 1000		40	55		25		1/2 19	19	M10	0×1		10	M2	0×1		22	50	17	138	4	4	17	15		51	2331	118	89		
125	to 2000		to 1000		54	60		32		1/2 1	19	M12	$\times 1.7$	75	13		27×2		27	58	20	160	6	6	17	15		65	2851	144	0		
$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	L2	L9	H	ød	$ø \mathrm{e}$	f		ℓ												h													
								$\begin{aligned} & 1 \\ & \hline \text { to } \\ & 50 \end{aligned}$	$\begin{array}{\|c\|} \hline 51 \\ \text { to } \\ 100 \\ \hline \end{array}$	$\begin{array}{c\|c\|} \hline 1 & 101 \\ 0 & \text { to } \\ 0 & 150 \end{array}$	$\begin{array}{c\|c} \hline 11 & 151 \\ 0 & \text { to } \\ 00 & 200 \end{array}$	$\begin{gathered} 201 \\ \text { to } \\ 300 \end{gathered}$	$\begin{gathered} 301 \\ \text { to } \\ 400 \end{gathered}$	$\begin{gathered} \hline 401 \\ \text { to } \\ 500 \end{gathered}$	$\begin{array}{\|c\|} \hline 501 \\ \text { to } \\ 600 \end{array}$	$\begin{aligned} & 601 \\ & \text { to } \\ & 700 \end{aligned}$	$\begin{array}{\|c\|} \hline 701 \\ \text { to } \\ 800 \end{array}$	$\begin{gathered} 801 \\ \text { to } \\ 900 \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 901 \\ \text { to } \\ 1000 \end{array}$	$\begin{gathered} 1 \\ \hline \text { to } \\ 50 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 51 \\ \text { to } \\ 100 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 101 \\ \text { to } \\ 150 \end{array}$	$\begin{array}{\|c\|} \hline 151 \\ \text { to } \\ 200 \end{array}$	$\left\|\begin{array}{c} 201 \\ \text { to } \\ 300 \end{array}\right\|$	$\begin{array}{c\|c\|} \hline 301 & 401 \\ \text { to } & \text { to } \\ 400 & 500 \end{array}$		$\begin{gathered} 501 \\ \text { to } \\ 600 \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 1 & 601 \\ \text { to } \\ \hline & 700 \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline 701 \\ \text { to } \\ 800 \\ \hline \end{array}$	$\begin{gathered} 801 \\ \text { to } \\ 900 \\ \hline \end{gathered}$	$\begin{gathered} 901 \\ \text { to } \\ 1000 \\ \hline \end{gathered}$		
32	15	4	48	54	36	23		12.5	25	37.5	. 50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	3238	8263	288	313		
40	17	4	54	54	36	23		12.5	25	37.5	. 50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	3238	8263	288	313		
50	24	5	69	64	51	25		12.5	25	37.5	.5 50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	5250	0275	5300	325		
63	24	5	69	64	51	25		12.5	25	37.5	. 50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	5250	0275	5300	325		
80	30	-	86	68	56	30		12.5	25	37.5	.5 50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	1266	6291	1316	341		
100	32	-	91	76	56	32		12.5	25	37.5	. 50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	1266	6291	1316	341		
125	40	-	119	82	75	40		10	20	30	40	60	80	100	120	140	160	180	200	130	140	150	160	180	200	220	240	0260	0280	300	320		

Series

Dimensions: Without Mounting Bracket

[First angle projection]
CP96S(D)B Bore size-Stroke w

With rod boot at both ends

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke Range (mm)	A	$\begin{gathered} \varnothing B \\ \text { d11 } \end{gathered}$	øD	EE	PL	RT	L12	KK	SW	G	BG	L8	VD	WA	WB	WH	ZY	L2	L9
32	to 1000	22	30	12	G 1/8	13	M6 x 1	6	M10 $\times 1.25$	10	32	16	94	4	4	7	26	190	15	4
40	to 1000	24	35	16	G 1/4	14	M6x 1	6.5	M12 $\times 1.25$	13	37.5	16	105	4	5	9	30	213	17	4
50	to 1000	32	40	20	G 1/4	15.5	M8 x 1.25	8	M16 $\times 1.5$	17	37.5	16	106	4	6	10.5	37	244	24	5
63	to 1000	32	45	20	G 3/8	16.5	M8 x 1.25	8	M16 x 1.5	17	45	16	121	4	9	12	37	259	24	5
80	to 1000	40	45	25	G 3/8	19	M10 x 1.5	10	M20 x 1.5	22	45	17	128	4	11.5	14	46	300	30	-
100	to 1000	40	55	25	G 1/2	19	M10 x 1.5	10	M20 x 1.5	22	50	17	138	4	17	15	51	320	32	-
125	to 1000	54	60	32	G 1/2	19	M12 $\times 1.75$	13	M27 x 2	27	58	20	160	6	17	15	65	398	40	-

					ℓ												h											
Bore size (mm)	H	$ø \mathrm{~d}$	$ø \mathrm{e}$	f	$\begin{aligned} & 1 \\ & \text { to } \\ & 50 \end{aligned}$	$\begin{array}{c\|} \hline 51 \\ \text { to } \\ 100 \end{array}$	$\begin{array}{\|c\|} \hline 101 \\ \text { to } \\ 150 \end{array}$	$\begin{array}{\|c\|} \hline 151 \\ \text { to } \\ 200 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 201 \\ \text { to } \\ 300 \end{array}$	$\left\|\begin{array}{c} 301 \\ \text { to } \\ 400 \end{array}\right\|$	$\begin{array}{\|c\|} \hline 401 \\ \text { to } \\ 500 \end{array}$	$\begin{array}{\|c\|} \hline 501 \\ \text { to } \\ 600 \end{array}$	$\begin{array}{\|c\|} \hline 601 \\ \text { to } \\ 700 \end{array}$	$\begin{array}{\|c\|} \hline 701 \\ \text { to } \\ 800 \end{array}$	$\begin{array}{c\|} \hline 801 \\ \text { to } \\ 900 \end{array}$	$\begin{gathered} 901 \\ \text { to } \\ 1000 \end{gathered}$	$\begin{gathered} 1 \\ \text { to } \\ 50 \end{gathered}$	$\begin{array}{\|c\|} \hline 51 \\ \text { to } \\ 100 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 101 \\ \text { to } \\ 150 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 151 \\ \text { to } \\ 200 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 201 \\ \text { to } \\ 300 \end{array}$	$\begin{array}{\|c\|} \hline 301 \\ \text { to } \\ 400 \end{array}$	$\begin{gathered} \hline 401 \\ \text { to } \\ 500 \end{gathered}$	$\begin{gathered} 501 \\ \text { to } \\ 600 \end{gathered}$	$\begin{gathered} 601 \\ \text { to } \\ 700 \end{gathered}$	$\begin{gathered} 701 \\ \text { to } \\ 800 \end{gathered}$	$\begin{gathered} 801 \\ \text { to } \\ 900 \end{gathered}$	$\begin{gathered} 901 \\ \text { to } \\ 1000 \end{gathered}$
32	48	54	36	23	12.5	25	37.5	50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	238	263	288	313
40	54	54	36	23	12.5	25	37.5	50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	238	263	288	313
50	69	64	51	25	12.5	25	37.5	50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	250	275	300	325
63	69	64	51	25	12.5	25	37.5	50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	250	275	300	325
80	86	68	56	30	12.5	25	37.5	50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	266	291	316	341
100	91	76	56	32	12.5	25	37.5	50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	266	291	316	341
125	119	82	75	40	10	20	30	40	60	80	100	120	140	160	180	200	130	140	150	160	180	200	220	240	260	280	300	320

Mounting (L)

Mounting (F/G)

Head end mounting (G)

Rod end mounting (F)

Mounting (C) Mounting (D)

Bore size (mm)	E1	TR	AH	AO	AT	\varnothing AB	SA	XA	R	TF	$ø$ FB	E2	UF	W	MF	ZF	UB h14	$\begin{aligned} & \text { CB } \\ & \text { H14 } \end{aligned}$	EW	$\begin{array}{r} \text { øCD } \\ \text { H9 } \end{array}$	L	MR	XD	EB
32	48	32	32	10	4.5	7	142	144	32	64	7	50	79	16	10	130	45	26	26-0.2/-0.6	10	12	9.5	142	65
40	55	36	36	11	4.5	10	161	163	36	72	9	55	90	20	10	145	52	28	28-0.2/-0.6	12	15	12	160	75
50	68	45	45	12	5.5	10	170	175	45	90	9	70	110	25	12	155	60	32	32-0.2/-0.6	12	15	12	170	80
63	80	50	50	12	5.5	10	185	190	50	100	9	80	120	25	12	170	70	40	40-0.2/-0.6	16	20	16	190	90
80	100	63	63	14	6.5	12	210	215	63	126	12	100	153	30	16	190	90	50	50-0.2/-0.6	16	20	16	210	110
100	120	75	71	16	6.5	14.5	220	230	75	150	14	120	178	35	16	205	110	60	60-0.2/-0.6	20	25	20	230	140
125	$\begin{aligned} & \text { Max. } \\ & 157 \end{aligned}$	90	90	Max. 25	8	16	250	270	90	180	16	Max. 157	Max. 224	45	20	245	130	70	70-0.5/-1.2	25	Min. 30	$\begin{gathered} \text { Max. } \\ 26 \end{gathered}$	275	Max. 157

Series

Dimensions: Cylinder Mounting Accessories (C/D/E/CS)
Mounting (C)

Bore size (mm)	\mathbf{E}_{1}	$\mathbf{E W}$	$\mathbf{T G} \mathbf{1}$	$\mathbf{F L}$	$\boldsymbol{e}_{\mathbf{1}}$	\mathbf{L}	$\boldsymbol{e}_{\mathbf{2}}$	$\varnothing \mathbf{d}_{\mathbf{1}}$	$\varnothing \mathbf{C D}$	$\mathbf{M R}$	$\varnothing \mathbf{d}_{\mathbf{2}}$	\mathbf{R}_{1}	$\mathbf{E}_{\mathbf{2}}$	$\mathbf{U B}$	$\mathbf{C B}$
$\mathbf{3 2}$	45	$26_{-0.6}^{-0.2}$	32.5	22	5	12	5.5	30	10	9.5	6.6	6.5	48	45	26
$\mathbf{4 0}$	51	$28_{-0.6}^{-0.2}$	38	25	5	15	5.5	35	12	12	6.6	6.5	56	52	28
$\mathbf{5 0}$	64	$32_{-0.6}^{-0.2}$	46.5	27	5	15	6.5	40	12	12	9	8.5	64	60	32
$\mathbf{6 3}$	74	$40_{-0.6}^{-0.2}$	56.5	32	5	20	6.5	45	16	16	9	8.5	75	70	40
$\mathbf{8 0}$	94	$50_{-0.6}^{-0.2}$	72	36	5	20	10	45	16	16	11	11	95	90	50
$\mathbf{1 0 0}$	113	$60_{-0.6}^{-0.2}$	89	41	5	25	10	55	20	20	11	12	115	110	60
$\mathbf{1 2 5}$	Max. 157	$70_{-1.2}^{-0.5}$	110	50	7	30	10	60	25	26	13.5	10	Max. 157	130	70

Mounting (E)

Bore size $(\mathbf{m m})$	$\varnothing \mathbf{d} \mathbf{2}$	$\varnothing \mathbf{C K}$	$\varnothing \mathbf{S} \mathbf{5}$	\mathbf{K}_{1}	\mathbf{K}_{2} max.	$\boldsymbol{\ell}_{\mathbf{3}}$ max.	$\mathbf{G}_{\mathbf{1}}$	$\boldsymbol{e}_{\mathbf{1}}$	\mathbf{G}_{2}	$\mathbf{E M}$	\mathbf{G}_{3} max.	$\mathbf{C A}$	\mathbf{H}_{6}	$\mathbf{R}_{\mathbf{1}}$
$\mathbf{3 2}$	11	10	6.6	38	51	10	21	7	18	$26_{-0.6}^{-0.2}$	31	32	8	10
$\mathbf{4 0}$	11	12	6.6	41	54	10	24	9	22	$28_{-0.6}^{-0.2}$	35	36	10	11
$\mathbf{5 0}$	15	12	9	50	65	12	33	11	30	$32_{-0.6}^{-0.2}$	45	45	12	12
$\mathbf{6 3}$	15	16	9	52	67	14	37	11	35	$40_{-0.6}^{-0.2}$	50	50	12	15
$\mathbf{8 0}$	18	16	11	66	86	18	47	12.5	40	$5_{-}^{-0.2}$	60	63	14	15
$\mathbf{1 0 0}$	18	20	11	76	96	20	55	13.5	50	$60_{-0.6}^{-0.2}$	70	71	15	19
$\mathbf{1 2 5}$	20	25	14	94	124	30	70	17	60	$70_{-0.5}^{-0.5}$	90	90	20	22.5

Mounting (CS): Head end clevis with ball joint

$\begin{aligned} & \text { Bore } \\ & \text { size } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	A	$\underset{\text { max. }}{B}$	C	$\begin{aligned} & \varnothing D \\ & \text { H7 } \end{aligned}$	$\begin{gathered} \hline \text { EN } \\ 0 \\ -0.1 \\ \hline \end{gathered}$	$\begin{array}{\|l} \mathrm{ER} \\ \text { max. } \end{array}$	øF H11	$\varnothing E$	L	øM	N	P	$\begin{gathered} \mathrm{H} \\ \pm 0.5 \end{gathered}$
32	32.5	10.5	22	10	14	15	30	6.6	45	10.5	5.5	5	-
40	38	12	25	12	16	18	35	6.6	55	11	5.5	5	-
50	46.5	15	27	16	21	20	40	9	65	15	6.5	5	51
63	56.5	15	32	16	21	23	45	9	75	15	6.5	5	-
80	72	18	36	20	25	27	45	11	95	18	10	5	70
100	89	18	41	20	25	30	55	11	115	18	10	5	-
125	110	25	50	30	37	40	60	13.5	140	20	10	7	100

Mounting (DS)

Bore size (mm)	E	B1	B2	B3	L1	TG1	T	$\begin{gathered} \ell_{1} \\ \text { min. } \end{gathered}$	ℓ_{2}	FL	$\underset{\max }{\mathrm{H}}$	ød1	ød2	$ø \mathrm{~d}^{\prime}$	øCN	SR max.	R
32	45	14	34	3.3	11.5	32.5	3	5	5.5	22	10	30	10.5	6.6	10	11	17
40	55	16	40	4.3	12	38	4	5	5.5	25	10	35	11	6.6	12	13	20
50	65	21	45	4.3	14	46.5	4	5	6.5	27	12	40	15	9	16	18	22
63	75	21	51	4.3	14	56.5	4	5	6.5	32	12	45	15	9	16	18	25
80	95	25	65	4.3	16	72	4	5	10	36	16	45	18	11	20	22	30
100	115	25	75	6.3	16	89	4	5	10	41	16	55	18	11	20	22	32
125	140	37	97	6.3	24	110	6	7	10	50	20	60	20	13.5	30	30	42

* Black color

Mounting (ES)

Bore size (mm)	$\varnothing \mathbf{d}_{\mathbf{3}}$	$\varnothing \mathbf{C N}$	$\varnothing \mathbf{S}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{1}}$	$\mathbf{K}_{\mathbf{2}}$ max.	$\boldsymbol{e}_{\mathbf{2}}$	$\mathbf{G}_{\mathbf{1}}$	$\mathbf{G}_{\mathbf{2}}$	\mathbf{G}_{3} max.	$\mathbf{E N}$	$\mathbf{E U}$	$\mathbf{C H}$	$\mathbf{H 6}$	$\mathbf{E R}$ max.
$\mathbf{3 2}$	$\mathbf{1 1}$	10	6.6	38	51	8.5	21	18	31	14	10.5	32	10	15
$\mathbf{4 0}$	11	12	6.6	41	54	8.5	24	22	35	16	12	36	10	18
$\mathbf{5 0}$	15	16	9	50	65	10.5	33	30	45	21	15	45	12	20
$\mathbf{6 3}$	15	16	9	52	67	10.5	37	35	50	21	15	50	12	23
$\mathbf{8 0}$	18	20	11	66	86	11.5	47	40	60	25	18	63	14	27
$\mathbf{1 0 0}$	18	20	11	76	96	12.5	55	50	70	25	18	71	15	30
$\mathbf{1 2 5}$	20	30	13.5	94	124	17	70	60	90	37	25	90	20	40

[^0]
Series CP96

Dimensions: Piston Rod Mounting Accessories

Floating Joint JA

Bore size (mm)	M	Part no.	A	B	C	\varnothing D	E	F	G	H	P	U	Load (kN)	Weight (g)	Angle
32	M10 $\times 1.25$	JA30-10-125	49.5	19.5	-	24	5	8	8	17	9	0.5	2.5	70	$\pm 0.5^{\circ}$
40	M12 x 1.25	JA40-12-125	60	20	-	31	6	11	11	22	13	0.75	4.4	160	
50,63	M16 $\times 1.5$	JA50-16-150	71.5	22	-	41	7.5	14	13.5	27	15	1	11	300	
80, 100	M20 $\times 1.5$	JAH50-20-150	101	28	31	59.5	11.5	24	16	32	18	2	18	1080	
125	M27 $\times 2$	JA125-27-200	123	34	38	66	13	27	20	41	24	2	28	1500	

* Black color

Rod Clevis GKM (ISO 8140), Supplied with Bolt and Safety Device

Bore size (mm)	e	Part no.	b	d	øf $\mathbf{h 1 1}$ (Shaft)	øf H9 (Hole)	\boldsymbol{e}_{1}	\mathbf{c} min.	\mathbf{a} max.
$\mathbf{3 2}$	M10 $\times 1.25$	GKM10-20	$10_{+0.15}^{+0.5}$	40	10	10	52	20	20
$\mathbf{4 0}$	M12 $\times 1.25$	GKM12-24	$12_{+0.15}^{+0.5}$	48	12	12	62	24	24
$\mathbf{5 0 , 6 3}$	M16 $\times 1.5$	GKM16-32	$16_{+0.15}^{+0.5}$	64	16	16	83	32	32
$\mathbf{8 0 , 1 0 0}$	M20 $\times 1.5$	GKM20-40	$20_{+0.15}^{+0.5}$	80	20	20	105	40	40
$\mathbf{1 2 5}$	M27 x $\mathbf{2 5}$	GKM30-54	$30_{+0.15}^{+0.5}$	110	30	30	148	54	55

Piston Rod Ball Joint KJ (ISO 8139)

$\begin{gathered} \hline \text { Bore size } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	d3	Part no.	ød1 н9	h	$\begin{gathered} \mathrm{d}_{\mathrm{max}} \end{gathered}$	b1 h12	$\underset{\text { min. }}{l}$	α	$\ell 3$
32	M10 $\times 1.25$	KJ10D	10	43	28	14	20	4°	15
40	M12 $\times 1.25$	KJ12D	12	50	32	16	22	4°	17
50, 63	M16 $\times 1.5$	KJ16D	16	64	42	21	28	4°	23
80, 100	M20 x 1.5	KJ20D	20	77	50	25	33	4°	27
125	M27 x 2	KJ27D	30	110	70	37	51	4°	36

ISO Cylinder: Non-rotating Rod Type Double Acting, Single/Double Rod Series CP96K $ø 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

How to Order

Applicable Auto Switches/Tie-rod Mounting

						Load vo	tage			wir	ngth				
Type	Special function	entry		(Output)		DC	AC	model	$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 1 \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$	connector		ad
	-	Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC	Relay, PLC
				3-wire (PNP)				M9P	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	$1 C$	
				2-wire		12 V		M9B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	Diagnosis indication (2-color)	Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NW	-	-	\bigcirc	\bigcirc	\bigcirc	IC	
				3-wire (PNP)				M9PW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		M9BW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	Water resistant (2-color)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NA**	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC	
				3-wire (PNP)				M9PA**	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		M9BA**	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	-	Grommet	Yes	$\begin{array}{\|c} \text { 3-wire } \\ \text { (Equiv. to NPN) } \\ \hline \end{array}$	-	5 V	-	A96	\bigcirc	-	\bigcirc	-	-	IC	-
				2-wire	24 V	12 V	100 V	A93	\bigcirc	-	\bigcirc	-	-	-	Relay, PLC
			None				100 V or less	A90	-	-	\bigcirc	-	-	IC	

* Lead wire length symbols: 0.5 m Nil (Example) M9NW
* Solid state switches marked with "○" are produced upon receipt of order.
$1 \mathrm{~m} . \ldots \mathrm{M}$ (Example) M9NWM
$3 \mathrm{~m} \mathrm{L}$ (Example) M9NWL
$5 \mathrm{~m} \cdot \ldots \mathrm{Z}$ (Example) M9NWZ
* Since there are other applicable auto switches than listed, refer to pages 1263 to 1371 in Best Pneumatics No.2.
* For details about auto switches with pre-wired connector, refer to pages 1328 and 1329 in Best Pneumatics No. 2.
* D-A9■, M9■, M9 \square W, M9 \square AL are shipped together, (but not assembled).
(Switch mounting bracket is only assembled at the time of shipment.)
** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
Consult with SMC regarding water resistant types with the above model numbers.

Moreover, D-M9 \square and A9 type cannot be mounted on square groove of the CP96 series.

Series CP96K

Specifications

Bore size (mm)	32	40	50	63	80	100
Action	Double acting					
Fluid	Air					
Proof pressure	1.5 MPa					
Max. operating pressure	1.0 MPa					
Min. operating pressure	0.05 MPa					
Ambient and fluid temperature	Without auto switch: -20 to $70^{\circ} \mathrm{C}$ * With auto switch: -10 to $60^{\circ} \mathrm{C}^{*}$					
Lubrication	Not required (Non-lube)					
Operating piston speed	50 to $1000 \mathrm{~mm} / \mathrm{s}$					
Allowable stroke tolerance	Up to 250 st: ${ }_{0}^{+1.0}, 251$ to 1000 st: ${ }_{0}^{+1.4}$					
Cushion	Both ends (Air cushion)					
Port size	G 1/8	G 1/4	G 1/4	G 3/8	G 3/8	G 1/2
Mounting	Basic, Axial foot, Rod end flange, Head end flange, Single clevis, Double clevis, Center trunnion					
Non-rotating accuracy	$\pm 0.5^{\circ}$		$\pm 0.5^{\circ}$		$\pm 0.3^{\circ}$	
Allowable rotating torque Nm max.	0.25	0.45	0.64		0.79	

* No freezing

Minimum Stroke for Auto Switch Mounting

Refer to page 19 for "Minimum Stroke for Auto Switch Mounting".

Maximum stroke

Bore size (mm)	Max. stroke*
$\mathbf{3 2}$	500
$\mathbf{4 0}$	500
$\mathbf{5 0}$	600
$\mathbf{6 3}$	600
$\mathbf{8 0}$	800
$\mathbf{1 0 0}$	800

Intermediate strokes are available.

* Please consult with SMC for longer strokes.

Accessories

Mounting		Basic	Foot	Rod end flange	Head end flange	Single clevis	Double clevis	Center trunnion
Standard	Rod end nut	-	-	\bigcirc	\bigcirc	\bigcirc	-	-
	Clevis pin	-	-	-	-	-	\bigcirc	-
Option	Piston rod ball joint	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
	Rod clevis	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
	Rod boot	-	-	-	-	-	-	-

* Please do not use a piston rod ball joint (or floating joint) together with a head end clevis with a ball joint (or angled head end clevis with a ball joint).

ISO Cylinder: Non-rotating Rod Type
 Double Acting, Single/Double Rod Series CP96K

Replacement Parts: Seal Kit/Single rod

Bore size (mm)	Kit no.	Contents
32	CK95-32	Kits include items (15) to (19.
40	CK95-40	
50	CK95-50	
63	CK95-63	
80	CK95-80	
100	CK96-100	

* Seal kits consist of items (15) to (19) contained in one kit, and can be orderd using the number for each respective tube bore size.

Seal Kit/Double rod

Bore size (mm)	Kit no.	Contents
32	CK95W-32	Kits include items (16) to (19).
40	CK95W-40	
50	CK95W-50	
63	CK95W-63	
80	CK95W-80	
100	CK96W-100	

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Rod cover	Aluminum die-casted	
$\mathbf{2}$	Head cover	Aluminum die-casted	
3	Cylinder tube	Aluminum alloy	
4	Piston rod	Stainless steel	
5	Piston	Aluminum alloy	
$6-1$	Cushion ring	steel	
$6-2$	Cushion ring	steel	
7	Tie-rod	Carbon steel	
8	Tie-rod nut	Steel	
9	Flat washer	Steel	$\varnothing 80$ and $\varnothing 100$
10	Rod end nut	Steel	
11	Cushion valve	Steel wire	
12	Non-rotating guide	Bearing alloy	
13	Snap ring	Steel for spring	$\varnothing 40$ to $\varnothing 100$
14	Set screw	Steel	
15	Wearing	Resin	
16	Piston seal	NBR	
17	Rod seal	NBR	
18	Cushion seal	Urethane rubber	
19	Cylinder tube gasket	NBR	
20	Cushion valve seal	NBR	
21	Piston gasket	NBR	
22	Spring washer	Steel	
23	Piston nut	Steel	
24	Magnet		

Series

Dimensions: Without Mounting Bracket
CP96K(D)B Bore size-Stroke

CP96K(D)B Bore size - Stroke w

* Mounting bracket are the same as standard type.

Refer to page 11 for details.

Bore size (mm)	Stroke Range (mm)	A	$\begin{gathered} \varnothing B \\ \mathbf{d} 11 \end{gathered}$	D	øD	EE	PL	RT	L12	KK	SW	G	BG	L8	VD	VA	WA	WB	WH	ZZ	ZY	E	R	L2	L9	H	SL
32	to 500	22	30	12.2	12	G 1/8	13	M6 x 1	6	M10 $\times 1.25$	10	32	16	94	4	4	4	7	26	146	190	47	32.5	15	4	48	10
40	to 500	24	35	14.2	16	G 1/4	14	M6 x 1	6.5	M12 $\times 1.25$	13	37.5	16	105	4	4	5	9	30	163	213	54	38	17	4	54	12
50	to 600	32	40	19	20	G 1/4	15.5	M8 $\times 1.25$	8	M16 $\times 1.5$	17	37.5	16	106	4	4	6	10.5	37	179	244	66	46.5	24	5	69	
63	to 600	32	45	19	20	G 3/8	16.5	M8 x 1.25	8	M16 $\times 1.5$	17	45	16	121	4	4	9	12	37	194	259	77	56.5	24	5	69	
80	to 800	40	45	23	25	G 3/8	19	M10 x 1.5	10	M20 $\times 1.5$	22	45	17	128	4	4	11.5	14	46	218	300	99	72	30	-	86	-
100	to 800	40	55	23	25	G 1/2	19	M10 x 1.5	10	M20 x 1.5	22	50	17	138	4	4	17	15	51	233	320	118	89	32	-	91	-

Series CP96

Auto Switch Mounting 1

Minimum Stroke for Auto Switch Mounting

Auto switch model	Number of auto switch mounted	32	40	50	63	80	100	125
D-M9 \square	2 switches (Different side, Same side)	15				10		
	1 switch	15				10		
	Other qty.	$15+5$ (n-2)				10+10 (n-2)		
$\begin{aligned} & \text { D-M9■W } \\ & \text { D-M9■AL } \end{aligned}$	2 switches (Different side, Same side)	15				10		
	1 switch	15				10		
	Other qty.	15+10 (n-2)				10+10 (n-2)		10+15 (n-2)
D-A9 \square	2 switches (Different side, Same side)	15						
	1 switch	15				10		
	Other qty.	$15+10$ ($\mathrm{n}-2$)			15+15 (n-2)			15+20 (n-2)

* $n=3,4,5 \ldots$

Recommended Mounting Position for Stroke Ends

Operating Range

Auto Switch Proper
Mounting Position
(mm)

	$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \\ & \text { D-M9 } \square \text { AL } \end{aligned}$		D-A9 \square	
	A	B	A	B
32	10.5	8	6.5	4
40	10.5	8	6.5	4
50	11	8.5	7	4.5
63	11	8.5	7	4.5
80	14	12.5	10	8.5
100	14	12.5	10	8.5
125	16	16	12	12

* Adjust the auto switch after confirming the operation to set actually.
Operating Range

Auto switch model							(mm)
	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$
D-M9 \square D-M9 $\square \mathbf{W}$ D-M9 \square AL	4	4	5	6	5.5	6	7
D-A9 \square	7	8	8.5	9.5	9.5	10.5	12.5

Note) Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately $\pm 30 \%$ dispersion)
There may be the case it will vary substantially depending on an ambient environment.

Series CP96
 Auto Switch Mounting 2

How to Mount and Move the Auto Switch
<Applicable Auto Switch>

Solid state switch $\ldots \ldots$	D-M9N/M9P/M9B
	D-M9NW/M9PW/M9BW
D-M9NAL/M9PAL/M9BAL	

How to Mount and Move the Auto Switch

- Please use a watchmaker's screwdriver with a handle diameter of 5 to 6 mm when tightening the auto switch mounting screw. A torque of 0.05 to $0.15 \mathrm{~N} \cdot \mathrm{~m}$ should be used for D-M9 \square, M9 $\square \mathrm{W}, \mathrm{M} 9 \square \mathrm{AL}$, and 0.10 to $0.20 \mathrm{~N} \cdot \mathrm{~m}$ for D-A9 \square.
Once the screw starts to feel tight, tighten it further by approximately another 90°.
Note) D-M9 $\square \square$ and A9 \square type cannot be mounted on square groove of the CP96 series.

ISO Cylinder

Series C96
 ø32, ø40, ø50, ø63, ø80, ø100, ø125

Series C96

Improved end of stroke cushion capacity

Piston rod lurching has been eliminated at the end of stroke positions by means of a floating seal mechanism.

Air cylinder Compact and light design

Reduced weight due to a change in the configuration of the cover.

Non-rotating accuracy

accuracy	(mm)
Bore size	θ
$\varnothing 32$ to $\varnothing 63$	$\pm 0.5^{\circ}$
$\varnothing 80, \varnothing 100$	$\pm 0.3^{\circ}$

New
Standard type with rod boot specifications.

$\varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100, \varnothing 125$

Easier inventory control of numerous direct mounting auto switch models.

Small sized auto switch can be attached.*

Solid state: D-M9 \square Reed: D-A9 \square D-M9 $\square \mathbf{W}$
 Direct mounting auto switch can be fixed to the tie-rod with a dedicated switch mounting bracket.

Simple end of stroke cushion valve adjustment

Since the adjustment of the cushion valve is performed with a hex wrench key, even finite control can be easily accomplished.
Furthermore, the cushion valve has been recessed so that it does not protrude from the cover.

Improved handling performance

Auto switch mounting and mounting position adjustment can be made in a one way direction.

New Made to Order added!
Improvement in applications by made to order specifications.

Symbol	Specifications	Standard type		Non-rotating rod type		Smooth cylinder
		Single rod	Double rod	Single rod	Double rod	Single rod
-XA■	Change of rod end shape	\bigcirc	\bigcirc	-	-	\bigcirc
-XC14	Change of trunnion bracket mounting position	\bigcirc	\bigcirc	-	-	-
-XB6	Heat resistant cylinder (-10 to $150^{\circ} \mathrm{C}$)	\bigcirc	\bigcirc	-	-	-
-XB7	Cold resistant cylinder (-40 to $70^{\circ} \mathrm{C}$)	\bigcirc	\bigcirc	-	-	-
-xC4	With heavy duty scraper	\bigcirc	\bigcirc	-	-	-
-XC7	Tie-rod, cushion valve, tie-rod nut, etc. made of stainless steel	\bigcirc	\bigcirc	-	-	-
-xC10	Dual stroke cylinder/Double rod type	\bigcirc	-	-	-	-
-XC11	Dual stroke cylinder/Single rod type	\bigcirc	-	-	-	-
-XC22	Fluororubber seals	\bigcirc	\bigcirc	-	-	-
-XC35	With coil scraper	\bigcirc	\bigcirc	-	-	-
-XC68	Made of stainless steel (With hard chrome plated piston rod)	\bigcirc	\bigcirc	-	-	-

ISO Cylinder: Standard
 Double Acting, Single/Double Rod Series C96 ø32, ø40, ø50, ø63, ø80, ø100, ø125

How to Order

* Lead wire length symbols: 0.5 m Nil (Example) M9NW
* Solid state switches marked with " \bigcirc " are produced upon receipt of order.
$1 \mathrm{~m}$. M (Example) M9NWM
$3 \mathrm{~m}$. L (Example) M9NWL
$5 \mathrm{~m} \cdots \ldots \ldots . \mathrm{Z}$ (Example) M9NWZ
* Since there are other applicable auto switches than listed, refer to pages 1263 to 1371 in Best Pneumatics No.2.
* For details about auto switches with pre-wired connector, refer to pages 1328 and 1329 in Best Pneumatics No.2.
* D-A9■, M9■, M9 \square W, M9 \square AL are shipped together, (but not assembled).
(Switch mounting bracket is only assembled at the time of shipment.)
** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers.

ISO Cylinder: Standard
 Series C96

Accessories
Cylinder Mounting Accessories

Piston Rod Mounting Accessories

	$\begin{array}{l\|l} \text { GKM } & \begin{array}{l} \text { Rod clevis } \\ \text { (ISO 8140) } \end{array} \end{array}$	KJ $\begin{aligned} & \text { Piston rod ball joint } \\ & \text { (ISO 8139) }\end{aligned}$	JA Floating joint
$\begin{aligned} & \text { Bore } \\ & \text { size } \\ & (\mathrm{mm}) \end{aligned}$	Page 14 for dimensions. Supplied with bolt and safety device.	Page 14 for dimensions.	Page 14 for dimensions.
32	GKM10-20	KJ10DM10X1.25	JA30-10-125
40	GKM12-24	KJ12D	JA40-12-125
50	GKM16-32	KJ16D	JA50-16-150
63	GKM16-32	KJ16D	JA50-16-150
80	GKM20-40	KJ20D	JAH50-20-150
100	GKM20-40	KJ20D	JAH50-20-150
125	GKM27-54	KJ27D	JA125-27-200

Specifications

Minimum Stroke for Auto Switch Mounting
Refer to page 44 for "Minimum Stroke for Auto Switch Mounting".

$\begin{array}{\|c} \text { Made to } \\ \text { Order } \end{array}$	Made to Order Specifications (For details, refer to pages 53 to 58.)
Symbol	Specifications
-XA \square	Change of rod end shape
-XC14	Change of trunnion bracket mounting position
-XB6	Heat resistant cylinder ($150^{\circ} \mathrm{C}$)
-XB7	Cold resistant cylinder
-XC4	With heavy duty scraper
-XC7	Tie rod, cushion valve, tie rod nut, etc. made of stainless steel
-XC10	Dual stroke cylinder/Double rod
-XC11	Dual stroke cylinder/Single rod
-XC22	Fluororubber seals
-XC35	With coil scraper
-XC68	Made of stainless steel (With hard chronium plated piston rod)

Bore size (mm)	32	40	50	63	80	100	125
Action	Double acting						
Fluid	Air						
Proof pressure	1.5 MPa						
Max. operating pressure	1.0 MPa						
Min. operating pressure	0.05 MPa						
Ambient and fluid temperature	Without auto switch: -20 to $70^{\circ} \mathrm{C}^{*}$ With auto switch: -10 to $60^{\circ} \mathrm{C}^{*}$						
Lubrication	Not required (Non-lube)						
Operating piston speed	50 to $1000 \mathrm{~mm} / \mathrm{s}$						50 to $700 \mathrm{~mm} / \mathrm{s}$
Allowable stroke tolerance	Up to 250 st: ${ }^{+1.0} 0,251$ to 1000 st: ${ }_{0}^{+1.4}, 1001$ to 1500 st: ${ }_{0}^{+1.8}, 1501$ to 2000 st: ${ }_{0}^{+2.2}$						
Cushion	Both ends (Air cushion)						
Port size	G 1/8	G 1/4	G 1/4	G 3/8	G 3/8	G 1/2	G 1/2
Mounting	Basic, Axial foot, Rod end flange, Head end flange, Single clevis, Double clevis, Center trunnion						

* No freezing

Standard Stroke (Single rod)

Bore size (mm)	Standard stroke (mm)	Max. stroke*	
	Single rod	Double rod	
$\mathbf{3 2}$	$25,50,80,100,125,160,200,250,320,400,500$	1000	
$\mathbf{4 0}$	$25,50,80,100,125,160,200,250,320,400,500$		
$\mathbf{5 0}$	$25,50,80,100,125,160,200,250,320,400,500,600$	1900	1000
$\mathbf{8 0}$	$25,50,80,100,125,160,200,250,320,400,500,600$		
$\mathbf{1 0 0}$	$25,50,80,100,125,160,200,250,320,400,500,600,700,800$		
$\mathbf{1 2 5}$	-	$20,100,125,160,200,250,320,400,500,600,700,800$	

Intermediate strokes are available.

* Please consult with SMC for longer strokes.
** $\varnothing 125$ and Double rod are produced upon recipt of order.

Accessories

Mounting		Basic	Foot	Rod end flange	Head end flange	Single clevis	Double clevis	Center trunnion
Standard	Rod end nut	-	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
	Clevis pin	-	-	-	-	-	\bigcirc	-
Option	Piston rod ball joint	\bigcirc						
	Rod clevis	\bigcirc						
	Rod boot	\bigcirc						

* Please do not use a piston rod ball joint (or floating joint) together with a head end clevis with a ball joint (or angled head end clevis with a ball joint).

ISO Cylinder: Standard Double Acting, Single/Double Rod

Theoretical Output

\rightarrow OUT
 IN

Bore size (mm)	Rod diameter (mm)	Operating direction	Piston area (mm^{2})	Operating pressure (MPa)								
				0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
32	12	OUT	804	161	241	322	402	482	563	643	724	804
		IN	691	138	207	276	346	415	484	553	622	691
40	16	OUT	1257	251	377	503	629	754	880	1006	1131	1257
		IN	1056	211	317	422	528	634	739	845	950	1056
50	20	OUT	1963	393	589	785	982	1178	1374	1570	1767	1963
		IN	1649	330	495	660	825	989	1154	1319	1484	1649
63	20	OUT	3117	623	935	1247	1559	1870	2182	2494	2805	3117
		IN	2803	561	841	1121	1402	1682	1962	2242	2523	2803
80	25	OUT	5027	1005	1508	2011	2514	3016	3519	4022	4524	5027
		IN	4536	907	1361	1814	2268	2722	3175	3629	4082	4536
100	25	OUT	7854	1571	2356	3142	3927	4712	5498	6283	7068	7854
		IN	7363	1473	2209	2945	3682	4418	5154	5890	6627	7363
125	32	OUT	12272	2454	3682	4909	6136	7363	8590	9817	11045	12272
		IN	11468	2294	3440	4587	5734	6881	8027	9174	10321	11468

Note) Theoretical out put $(\mathrm{N})=$ Pressure $(\mathrm{MPa}) \times$ Piston area $\left(\mathrm{mm}^{2}\right)$

Weight (single rod)

Bore size (mm)		32	40	50	63	80	100	125
Basic Weight	Basic	0.53	0.83	1.33	1.74	2.77	3.69	6.70
	Foot	0.16	0.20	0.38	0.46	0.89	1.09	2.60
	Flange	0.20	0.23	0.47	0.58	1.30	1.81	4.10
	Single clevis	0.16	0.23	0.37	0.60	1.07	1.73	4.15
	Double clevis	0.20	0.32	0.45	0.71	1.28	2.11	4.25
	Trunnion	0.71	1.10	1.73	2.48	4.25	5.95	2.98
Additional mass per each 50 mm stroke	All mounting brackets	0.11	0.16	0.24	0.26	0.40	0.44	0.71
Accessory	Single rod clevis	0.07	0.11	0.22		0.40		1.20
	Double rod clevis	0.09	0.15	0.34		0.69		1.84

Calculation: (Example) C96SD40-100

- Basic weight $0.83(\mathrm{~kg})$ (Basic, ø40) • Mounting 0.32 (kg) (Double clevis)
- Additional weight 0.16 (kg/50 st)
- Cylinder stroke 100 (st)
$0.83+0.16 \times 100 \div 50+0.32=1.47 \mathrm{~kg}$

Allowable Kinetic Energy

Example: Load limit at rod end when air cylinder $\varnothing 63$ is actuated with max. actuating speed $500 \mathrm{~mm} / \mathrm{s}$. See the intersection of lateral axis $500 \mathrm{~mm} / \mathrm{s}$ and ø63 line, and extend the intersection to left. Thus, the allowable load is 80 kg .

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Rod cover	Aluminum die-casted	
2	Head cover	Aluminum die-casted	
$\mathbf{3}$	Cylinder tube	Aluminum alloy	
4	Piston rod	Carbon steel	
5	Piston	Aluminum alloy	
6	Cushion ring	Aluminum alloy	
7	Tie-rod	Carbon steel	
8	Tie-rod nut	Steel	
9	Flat washer	Steel	$\varnothing 80$ and $\varnothing 100$
10	Rod end nut	Steel	
11	Cushion valve	Steel wire	
12	Bushing	Bearing alloy	
13	Snap ring	Steel for spring	$\varnothing 40$ to $\varnothing 125$
14	Rod seal holder	Stainless steel	$\varnothing 125$
15	Snap ring	Steel for spring	$\varnothing 125$
16	Cushion seal	Urethane rubber	
17	Wearing	Resin	
18	Piston seal	NBR	
19	Rod seal	NBR	
20	Cylinder tube gasket	NBR	
21	Cushion valve seal	NBR	
22	Piston gasket	NBR	
23	Magnet		

Replacement Parts: Seal Kit/Single rod

Bore size (mm)	Kit no.	Contents
32	CS95-32	Kits include items (16) to (20).
40	CS95-40	
50	CS95-50	
63	CS95-63	
80	CS95-80	
100	CS96-100	
125	CS96-125	

* Seal kits consist of items (16) to (20) contained in one kit, and can be orderd using the number for each respective tube bore size.

Seal Kit/Double rod

Bore size (mm)	Kit no.	Contents
32	CS95W-32	Kits include items (16) and (18) to (20)
40	CS95W-40	
50	CS95W-50	
63	CS95W-63	
80	CS95W-80	
100	CS96W-100	
125	CS96W-125	

ISO Cylinder: Standard Double Acting, Single/Double Rod

C96S(D)B Bore size-Stroke

With rod boot

$\begin{gathered} \hline \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke Range(mm)		A	$\left\|\begin{array}{c} \varnothing \text { © } \\ \text { d11 } \end{array}\right\|$	øD	EE	PL	RT	L12	KK	SW	G	BG	L8	D	VA	WA	WB	WH	ZZ	E	R
	Without rod boot	With rod boot																				
32	to 1000	to 1000	22	30	12	G 1/8	13	M6 x	6	M10 x 1.25	10	32	16	94	4	4	4	7	26	146	47	32.5
40	to 1900	to 1000	24	35	16	G 1/4	14	M6 x 1	6.5	M12 x 1.25	13	37.5	16	105	4	4	5	9	30	163	54	38
50	to 1900	to 1000	32	40	20	G 1/4	15.5	M8 x 1.25	8	M16 $\times 1.5$	17	37.5	16	106	4	4	6	10.5	37	179	66	46.5
63	to 1900	to 1000	32	45	20	G $3 / 8$	16.5	M8 $\times 1.25$	8	M16 $\times 1.5$	17	45	16	121	4	4	9	12	37	194	77	56.5
80	to 1900	to 1000	40	45	25	G 3/8	19	M10 $\times 1.5$	10	M 20×1.5	22	45	17	128	4	4	11.5	14	46	218	99	72
100	to 1900*	to 1000*	40	55	25	G 1/2	19	M10 x 1.5	10	M20 x 1.5	22	50	17	138	4	4	17	15	51	233	118	89
125	to 2000*	to 1000*	54	60	32	G 1/2	19	M12 $\times 1.75$	13	M27 x 2	27	58	20	160	6	6	17	15	65	285	144	110

* Minimum stroke for trunnion mounting are below. Tube I.D. 32 to $80: 0 \mathrm{~mm}$, Tube I.D. 100: 5mm, Tube I.D. 125 : 10 mm

Bore size (mm)	L2	L9	H	$ø d$	øе	f	ℓ												h											
							$\begin{array}{\|c\|} \hline 1 \\ \text { to } \\ 50 \end{array}$	$\begin{array}{\|c\|} \hline 51 \\ \text { to } \\ 100 \end{array}$	$\begin{array}{\|c\|} \hline 101 \\ \text { to } \\ 150 \end{array}$	$\begin{gathered} 151 \\ \text { to } \\ 20 \end{gathered}$	$\begin{gathered} 201 \\ \text { to } \\ 300 \end{gathered}$	$\begin{array}{\|c\|} \hline 301 \\ \text { to } \\ 400 \end{array}$	$\begin{array}{c\|} \hline 401 \\ \text { to } \\ 500 \end{array}$	$\begin{array}{c\|} \hline 501 \\ \text { to } \\ 600 \end{array}$	$\begin{gathered} 601 \\ \text { to } \\ 700 \end{gathered}$	$\begin{array}{c\|} \hline 701 \\ \text { to } \\ 800 \end{array}$	$\begin{array}{c\|} 801 \\ \text { to } \\ 900 \end{array}$	$\begin{array}{\|c\|} \hline 901 \\ \text { to } \\ 1000 \\ \hline \end{array}$	$\begin{gathered} 1 \\ \text { to } \\ 50 \end{gathered}$	$\begin{array}{\|c\|} \hline 51 \\ \text { to } \\ 100 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 101 \\ \text { to } \\ 150 \end{array}$	$\begin{array}{\|c\|} \hline 151 \\ \text { to } \\ 200 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 201 \\ \text { to } \\ 300 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 301 \\ \text { to } \\ 400 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 401 \\ \text { to } \\ 500 \end{array}$	$\begin{array}{c\|} \hline 501 \\ \text { to } \\ 600 \end{array}$	$\begin{array}{c\|} \hline 601 \\ \text { to } \\ 700 \end{array}$	$\begin{array}{c\|} 701 \\ \text { to } \\ 800 \end{array}$	$\begin{array}{\|c\|} \hline 801 \\ \text { to } \\ 900 \end{array}$	$\left[\begin{array}{c} 901 \\ \text { to } \\ 1000 \end{array}\right.$
32	15	4	48	54	36	23	12.5	25	37.5	50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	238	263	288	313
40	17	4	54	54	36	23	12.5	25	37.5	50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	238	263	288	313
50	24	5	69	64	51	25	12.5	25	37.5	50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	250	275	300	325
63	24	5	69	64	51	25	12.5	25	37.5	50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	250	275	300	325
80	30	-	86	68	56	30	12.5	25	37.5	50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	266	291	316	341
100	32	-	91	76	56	32	12.5	25	37.5	50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	266	291	316	341
125	40	-	119	82	75	40	10	20	30	40	60	80	100	120	140	160	180	200	130	140	150	160	180	200	220	240	260	280	300	320

Series

Dimensions: Without Mounting Bracket
[First angle projection]
C96S(D)B Bore size-Stroke W

With rod boot at one end

With rod boot at both ends

$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Stroke Range (mm)	A	$\begin{gathered} \varnothing B \\ \text { d11 } \end{gathered}$	øD	EE	PL	RT	L12	KK	SW	G	BG	L8	VD	WA	WB	WH	ZY	L2	L9
32	to 1000	22	30	12	G 1/8	13	M6 x 1	6	M10 $\times 1.25$	10	32	16	94	4	4	7	26	190	15	4
40	to 1000	24	35	16	G 1/4	14	M6x1	6.5	M12 $\times 1.25$	13	37.5	16	105	4	5	9	30	213	17	4
50	to 1000	32	40	20	G 1/4	15.5	M8 x 1.25	8	M16 x 1.5	17	37.5	16	106	4	6	10.5	37	244	24	5
63	to 1000	32	45	20	G 3/8	16.5	M8 x 1.25	8	M16 x 1.5	17	45	16	121	4	9	12	37	259	24	5
80	to 1000	40	45	25	G 3/8	19	M10 x 1.5	10	M 20×1.5	22	45	17	128	4	11.5	14	46	300	30	-
100	to 1000*	40	55	25	G 1/2	19	M10 x 1.5	10	M20 $\times 1.5$	22	50	17	138	4	17	15	51	320	32	-
125	to 1000*	54	60	32	G 1/2	19	M12 x 1.75	13	M27 x 2	27	58	20	160	6	17	15	65	398	40	-

* Minimum stroke for trunnion mounting are below. Tube I.D. 32 to 80:0mm, Tube I.D. 100:5mm, Tube I.D. 125:10mm

					ℓ												h											
$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	H	$ø d$	$ø$ ø	f	$\begin{array}{\|c\|} \hline 1 \\ \text { to } \\ 50 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 51 \\ \text { to } \\ 100 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 101 \\ \text { to } \\ 150 \end{array}$	$\begin{array}{\|c\|} \hline 151 \\ \text { to } \\ 200 \end{array}$	$\left\|\begin{array}{c} 201 \\ \text { to } \\ 300 \end{array}\right\|$	$\left\|\begin{array}{c} 301 \\ \text { to } \\ 400 \end{array}\right\|$	$\left\|\begin{array}{c} 401 \\ \text { to } \\ 500 \end{array}\right\|$	$\begin{array}{\|c\|} \hline 501 \\ \text { to } \\ 600 \end{array}$	$\begin{array}{\|c\|} \hline 601 \\ \text { to } \\ 700 \end{array}$	$\left\|\begin{array}{c\|} 701 \\ \text { to } \\ 800 \end{array}\right\|$	$\left\|\begin{array}{c} 801 \\ \text { to } \\ 900 \end{array}\right\|$	$\begin{gathered} 9901 \\ \text { to } \\ 1000 \end{gathered}$	$\begin{array}{\|c\|} \hline 1 \\ \text { to } \\ 50 \end{array}$	$\begin{array}{\|c\|} \hline 51 \\ \text { to } \\ 100 \\ \hline \end{array}$	$\begin{gathered} \hline 101 \\ \text { to } \\ 150 \end{gathered}$	$\begin{array}{\|c\|} \hline 151 \\ \text { to } \\ 200 \end{array}$	$\left\|\begin{array}{c} 201 \\ \text { to } \\ 300 \end{array}\right\|$	$\left\lvert\, \begin{gathered} 301 \\ \text { to } \\ 400 \end{gathered}\right.$	$\begin{gathered} 401 \\ \text { to } \\ 500 \end{gathered}$	$\begin{gathered} 501 \\ \text { to } \\ 600 \end{gathered}$	$\begin{gathered} 601 \\ \text { to } \\ 700 \end{gathered}$	$\left\lvert\, \begin{gathered} 701 \\ \text { to } \\ 800 \end{gathered}\right.$	$\begin{gathered} 801 \\ \text { to } \\ 900 \end{gathered}$	$\begin{gathered} 901 \\ \text { to } \\ 1000 \end{gathered}$
32	48	54	36	23	12.5	25	37.5	50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	238	263	288	313
40	54	54	36	23	12.5	25	37.5	50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	238	263	288	313
50	69	64	51	25	12.5	25	37.5	50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	250	275	300	325
63	69	64	51	25	12.5	25	37.5	50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	250	275	300	325
80	86	68	56	30	12.5	25	37.5	50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	266	291	316	341
100	91	76	56	32	12.5	25	37.5	50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	266	291	316	341
125	119	82	75	40	10	20	30	40	60	80	100	120	140	160	180	200	130	140	150	160	180	200	220	240	260	280	300	320

Foot (L)

Center trunnion (T)

Head end mounting (G)

Rod end mounting (F)

Head end single clevis (C)

Head end double clevis (D)

Bore size (mm)	E1	TR	AH	AO	AT	øAB	SA	XA	TM	TL	$\begin{gathered} \varnothing T D \\ \text { e8 } \end{gathered}$	UW	L1	XV	Z	R	TF	øFB	E2	UF	W	MF	ZF	$\begin{gathered} \text { UB } \\ \text { h14 } \end{gathered}$	$\begin{aligned} & \text { CB } \\ & \text { H14 } \end{aligned}$	EW	$\begin{array}{\|c} \hline \text { ØCD } \\ \text { H9 } \end{array}$	L	MR	XD	EB
32	48	32	32	10	4.5	7	142	144	50	12	12	49	17	73	95	32	64	7	50	79	16	10	130	45	26	26-0.2/-0.6	10	2	9.5	142	65
40	55	36	36	11	4.5	10	161	163	63	16	16	58	22	82.5	106.5	36	72	9	55	90	20	10	145	52	28	28-0.2/-0.6	12	15	12	160	75
50	68	45	45	12	5.5	10	170	175	75	16	16	71	22	90	12	45	90	9	70	110	25	12	155	60	32	2-0.2/-0.6	12	15	12	170	80
63	80	50	50	12	5.5	10	185	190	90	20	20	87	28	97.5	129.5	50	100	9	80	120	25	12	170	70	40	40-0.2/-0.6	16	20	16	190	90
80	100	63	63	14	6.5	12	210	215	110	20	20	110	34	110	150	63	126	12	100	153	30	16	190	90	50	0-0.2/-0.6	16	20	16	210	110
100	120	75	71	16	6.5	14.5	220	230	132	25	25	136	40	120	160	75	150	14	120	178	35	16	205	110	60	-0.2/-0.6	20	25	20	230	140
125	$\begin{array}{\|c\|c\|} \hline \text { Max. } \\ 157 \end{array}$	90	90	$\begin{array}{\|c\|} \hline \text { Max. } \\ 25 \end{array}$	8	16	250	270	160	25	25	$\begin{array}{\|c\|c\|} \hline \text { Max. } \\ 160 \end{array}$	50	145	199	90	180	16	$\begin{array}{\|c\|} \hline \text { Max. } \\ 157 \\ \hline \end{array}$	$\underset{224}{\operatorname{Max} .}$	45	20	245	130	70	70-0.5/-1.2	25	$\begin{array}{\|c\|} \hline \text { Min. } \\ 30 \end{array}$	$\left.\begin{array}{\|c\|} \hline \text { Max. } \\ 26 \end{array} \right\rvert\,$	275	$\begin{array}{\|l\|l} \text { Max. } \\ 157 \end{array}$

Series

Dimensions: Cylinder Mounting Accessories (C/D/E/CS)

Mounting (C)

Mounting (D)

Bore size $(\mathbf{m m})$	$\mathbf{E}_{\mathbf{1}}$	$\mathbf{E W}$	$\mathbf{T G} \mathbf{1}$	$\mathbf{F L}$	$\boldsymbol{e}_{\mathbf{1}}$	\mathbf{L}	$\boldsymbol{e}_{\mathbf{2}}$	$\varnothing \mathbf{d}_{\mathbf{1}}$	$\varnothing \mathbf{C D}$	$\mathbf{M R}$	$\varnothing \mathbf{d}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{E}_{\mathbf{2}}$	$\mathbf{U B}$	$\mathbf{C B}$
$\mathbf{3 2}$	45	$26_{-0.6}^{-0.2}$	32.5	22	5	12	5.5	30	10	9.5	6.6	6.5	48	45	26
$\mathbf{4 0}$	51	$28_{-0.6}^{-0.2}$	38	25	5	15	5.5	35	12	12	6.6	6.5	56	52	28
$\mathbf{5 0}$	64	$32_{-0.6}^{-0.2}$	46.5	27	5	15	6.5	40	12	12	9	8.5	64	60	32
$\mathbf{6 3}$	74	$40_{-0.6}^{-0.2}$	56.5	32	5	20	6.5	45	16	16	9	8.5	75	70	40
$\mathbf{8 0}$	94	$50_{-0.6}^{-0.2}$	72	36	5	20	10	45	16	16	11	11	95	90	50
$\mathbf{1 0 0}$	113	$60_{-0.6}^{-0.2}$	89	41	5	25	10	55	20	20	11	12	115	110	60
$\mathbf{1 2 5}$	Max. 157	$70_{-1.2}^{-0.5}$	110	50	7	30	10	60	25	26	13.5	10	Max. 157	130	70

Mounting (E)

Bore size (mm)	$ø \mathrm{~d} 2$	øCK	øS5	K1	$\underset{\text { max }}{\mathrm{K}_{2}}$	$\begin{aligned} & \ell_{3} \\ & \text { max. } \end{aligned}$	G1	ℓ_{1}	G2	EM	G3 max.	CA	H6	R1
32	11	10	6.6	38	51	10	21	7	18	$26_{-0.6}^{-0.2}$	31	32	8	10
40	11	12	6.6	41	54	10	24	9	22	$28_{-0.6}^{-0.2}$	35	36	10	11
50	15	12	9	50	65	12	33	11	30	$32_{-0.6}^{-0.2}$	45	45	12	12
63	15	16	9	52	67	14	37	11	35	$40_{-0.6}^{-0.2}$	50	50	12	15
80	18	16	11	66	86	18	47	12.5	40	$50_{-0.6}^{-0.2}$	60	63	14	15
100	18	20	11	76	96	20	55	13.5	50	$60_{-0.6}^{-0.2}$	70	71	15	19
125	20	25	14	94	124	30	70	17	60	$70_{-1.5}^{-0.5}$	90	90	20	22.5

Mounting (CS): Head end clevis with ball joint

$\begin{aligned} & \hline \text { Bore } \\ & \text { size } \\ & \text { (mm) } \end{aligned}$	A	$\underset{\text { max. }}{\mathbf{B}}$	C	$\begin{array}{\|l\|} \varnothing \text { D } \\ \text { H7 } \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { EN } \\ 0 \\ -0.1 \\ \hline \end{array}$	$\begin{aligned} & \text { ER } \\ & \text { max. } \end{aligned}$	$\begin{gathered} \propto F \\ \mathbf{H} 11 \end{gathered}$	$\varnothing E$	L	$\varnothing \mathrm{M}$	N	P	$\underset{ \pm 0.5}{\mathrm{H}}$
32	32.5	10.5	22	10	14	15	30	6.6	45	10.5	5.5	5	-
40	38	12	25	12	16	18	35	6.6	55	11	5.5	5	-
50	46.5	15	27	16	21	20	40	9	65	15	6.5	5	51
63	56.5	15	32	16	21	23	45	9	75	15	6.5	5	-
80	72	18	36	20	25	27	45	11	95	18	10	5	70
100	89	18	41	20	25	30	55	11	115	18	10	5	-
125	110	25	50	30	37	40	60	13.5	140	20	10	7	100

Mounting (DS)

Bore size (mm)	E	B1	B2	B3	L1	TG1	T	$\underset{\text { min. }}{\ell_{1}}$	ℓ_{2}	FL	$\underset{\max .}{\mathrm{H}}$	$ø d_{1}$	$ø \mathrm{~d}_{2}$	ød3	$\varnothing \mathrm{CN}$	SR max.	R
32	45	14	34	3.3	11.5	32.5	3	5	5.5	22	10	30	10.5	6.6	10	11	17
40	55	16	40	4.3	12	38	4	5	5.5	25	10	35	11	6.6	12	13	20
50	65	21	45	4.3	14	46.5	4	5	6.5	27	12	40	15	9	16	18	22
63	75	21	51	4.3	14	56.5	4	5	6.5	32	12	45	15	9	16	18	25
80	95	25	65	4.3	16	72	4	5	10	36	16	45	18	11	20	22	30
100	115	25	75	6.3	16	89	4	5	10	41	16	55	18	11	20	22	32
125	140	37	97	6.3	24	110	6	7	10	50	20	60	20	13.5	30	30	42

* Black color

Mounting (ES)

Bore size $(\mathbf{m m})$	$\varnothing \mathbf{d}_{\mathbf{3}}$	$\varnothing \mathbf{C N}$	$\varnothing \mathbf{S}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{1}}$	$\mathbf{K}_{\mathbf{2}}$ max.	$\boldsymbol{C}_{\mathbf{2}}$	$\mathbf{G}_{\mathbf{1}}$	$\mathbf{G}_{\mathbf{2}}$	$\mathbf{G}_{\mathbf{3}}$ max.	$\mathbf{E N}$	$\mathbf{E U}$	$\mathbf{C H}$	$\mathbf{H 6}$	$\mathbf{E R}$ max.
$\mathbf{3 2}$	11	10	6.6	38	51	8.5	21	18	31	14	10.5	32	10	15
$\mathbf{4 0}$	11	12	6.6	41	54	8.5	24	22	35	16	12	36	10	18
$\mathbf{5 0}$	15	16	9	50	65	10.5	33	30	45	21	15	45	12	20
$\mathbf{6 3}$	15	16	9	52	67	10.5	37	35	50	21	15	50	12	23
$\mathbf{8 0}$	18	20	11	66	86	11.5	47	40	60	25	18	63	14	27
$\mathbf{1 0 0}$	18	20	11	76	96	12.5	55	50	70	25	18	71	15	30
$\mathbf{1 2 5}$	20	30	13.5	94	124	17	70	60	90	37	25	90	20	40

* Black color

Series C96

Dimensions: Piston Rod Mounting Accessories

Floating Joint JA

Bore size (mm)	M	Part no.	A	B	C	øD	E	F	G	H	P	U	Load (kN)	Weight (g)	Angle
32	M10 $\times 1.25$	JA30-10-125	49.5	19.5	-	24	5	8	8	17	9	0.5	2.5	70	$\pm 0.5^{\circ}$
40	M12 $\times 1.25$	JA40-12-125	60	20	-	31	6	11	11	22	13	0.75	4.4	160	
50,63	M16 $\times 1.5$	JA50-16-150	71.5	22	-	41	7.5	14	13.5	27	15	1	11	300	
80, 100	M20 x 1.5	JAH50-20-150	101	28	31	59.5	11.5	24	16	32	18	2	18	1080	
125	M27 x 2	JA125-27-200	123	34	38	66	13	27	20	41	24	2	28	1500	

* Black color

Rod Clevis GKM (ISO 8140), Supplied with Bolt and Safety Device

Bore size (mm)	e	Part no.	b	d	øf h11 (Shaft)	øf H9 (Hole)	$\boldsymbol{\ell}_{1}$	\mathbf{c} min.	\mathbf{a} max.
$\mathbf{3 2}$	M10 $\times 1.25$	GKM10-20	$10_{+0.15}^{+0.5}$	40	10	10	52	20	20
$\mathbf{4 0}$	M12 $\times 1.25$	GKM12-24	$12_{+0.15}^{+0.5}$	48	12	12	62	24	24
$\mathbf{5 0 , 6 3}$	M16 $\times 1.5$	GKM16-32	$16_{+0.15}^{+0.5}$	64	16	16	83	32	32
$\mathbf{8 0 , 1 0 0}$	M20 x 1.5	GKM20-40	$20_{+0.15}^{+0.5}$	80	20	20	105	40	40
$\mathbf{1 2 5}$	M27 x2	GKM30-54	$30_{+0.15}^{+0.5}$	110	30	30	148	54	55

Piston Rod Ball Joint KJ (ISO 8139)

$\begin{gathered} \hline \text { Bore size } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	d3	Part no.	ød1 н9	h	d6	b1 h12	$\underset{\text { min. }}{l}$	a	$\ell 3$
32	M10 $\times 1.25$	KJ10D	10	43	28	14	20	4°	15
40	M12 $\times 1.25$	KJ12D	12	50	32	16	22	4°	17
50, 63	M16 $\times 1.5$	KJ16D	16	64	42	21	28	4°	23
80, 100	M 20×1.5	KJ20D	20	77	50	25	33	4°	27
125	M27 x 2	KJ27D	30	110	70	37	51	4°	36

ISO Cylinder: Non-rotating Rod Type Double Acting, Single/Double Rod Series C96K $\varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

Nil	Without auto switch

* For applicable auto switch model, refer to the below table.
Stroke (mm)
Refer to "Maximum Stroke" on page 36.

Applicable Auto Switches/Tie-rod Mounting

* Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots .$. Nil (Example) M9NW
* Solid state switches marked with " \bigcirc " are produced upon receipt of order.
$1 \mathrm{~m} \mathrm{M}$ (Example) M9NWM
$3 \mathrm{~m} \mathrm{L}$ (Example) M9NWL
$5 \mathrm{~m} \mathrm{Z}$ (Example) M9NWZ
* Since there are other applicable auto switches than listed, refer to pages 1263 to 1371 in Best Pneumatics No.2.
* For details about auto switches with pre-wired connector, refer to pages 1328 and 1329 in Best Pneumatics No.2.
* D-A9 \square, M9 \square, M9 \square W, M9 \square AL are shipped together, (but not assembled).
(Switch mounting bracket is only assembled at the time of shipment.)
** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers.

Series C96K

Specifications

Minimum Stroke for Auto Switch Mounting

Refer to page 44 for "Minimum Stroke for Auto Switch Mounting".

Bore size (mm)	32	40	50	63	80	100
Action	Double acting					
Fluid	Air					
Proof pressure	1.5 MPa					
Max. operating pressure	1.0 MPa					
Min. operating pressure	0.05 MPa					
Ambient and fluid temperature	Without auto switch: -20 to $70^{\circ} \mathrm{C}$ * With auto switch: -10 to $60^{\circ} \mathrm{C}^{*}$					
Lubrication	Not required (Non-lube)					
Operating piston speed	50 to $1000 \mathrm{~mm} / \mathrm{s}$					
Allowable stroke tolerance	Up to 250 st: ${ }^{+1.0}{ }_{0}, 251$ to 1000 st: ${ }_{0}^{+1.4}$					
Cushion	Both ends (Air cushion)					
Port size	G 1/8	G 1/4	G 1/4	G 3/8	G 3/8	G 1/2
Mounting	Basic, Axial foot, Rod end flange, Head end flange, Single clevis, Double clevis, Center trunnion					
Non-rotating accuracy	$\pm 0.5^{\circ}$		$\pm 0.5^{\circ}$		$\pm 0.3^{\circ}$	
Allowable rotating torque Nm max.	0.25	0.45	0.64		0.79	

* No freezing

Maximum stroke

Bore size (mm)	Max. stroke*
$\mathbf{3 2}$	500
$\mathbf{4 0}$	500
$\mathbf{5 0}$	600
$\mathbf{6 3}$	600
$\mathbf{8 0}$	800
$\mathbf{1 0 0}$	800

Intermediate strokes are available.

* Please consult with SMC for longer strokes.

Accessories

Mounting		Basic	Foot	Rod end flange	Head end flange	Single clevis	Double clevis	Center trunnion
Standard	Rod end nut	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-
	Clevis pin	-	-	-	-	-	-	-
Option	Piston rod ball joint	\bigcirc						
	Rod clevis	\bigcirc						
	Rod boot	-	-	-	-	-	-	-

[^1]

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Rod cover	Aluminum die-casted	
2	Head cover	Aluminum die-casted	
3	Cylinder tube	Aluminum alloy	
4	Piston rod	Stainless steel	
5	Piston	Aluminum alloy	
$6-1$	Cushion ring	Steel	
$6-2$	Cushion ring	Steel	
7	Tie-rod	Carbon steel	
8	Tie-rod nut	Steel	
9	Flat washer	Steel	$\varnothing 80$ and $\varnothing 100$
10	Rod end nut	Steel	
11	Cushion valve	Steel wire	
12	Non-rotating guide	Bearing alloy	
13	Snap ring	Steel for spring	$\varnothing 40$ to $\varnothing 100$
14	Set screw	steel	
15	Wearing	Resin	
16	Piston seal	NBR	
17	Rod seal	NBR	
18	Cushion seal	Urethane rubber	
19	Cylinder tube gasket	NBR	
20	Cushion valve seal	NBR	
21	Piston gasket	NBR	
22	Spring washer	steel	
23	Piston nut	steel	
24	Magnet		

Replacement Parts: Seal Kit/Single rod

Bore size (mm)	Kit no.	Contents
$\mathbf{3 2}$	CK95-32	
$\mathbf{4 0}$	CK95-40	
$\mathbf{5 0}$	CK95-50	Kits include items
$\mathbf{6 3}$	CK95-63	
$\mathbf{8 0}$	CK95-80	
$\mathbf{1 0 0}$	CK96-100	

* Seal kits consist of items (15) to (19) contained in one kit, and can be orderd using the number for each respective tube bore size.

Seal Kit/Double rod

Kit no.		Contents
$\mathbf{B y n}(\mathrm{mm})$		
$\mathbf{4 0}$	CK95W-32	
$\mathbf{5 0}$	CK95W-40	Kits include items
$\mathbf{6 3}$	CK95W-50	
$\mathbf{8 0}$	CK95W-63	
$\mathbf{1 0 0}$	CK95W-80	
	CK96W-100	

Series
 C96K

Dimensions: Without Mounting Bracket
C96K(D)B Bore size-Stroke

C96K(D)B Bore size-Stroke w

* Mounting bracket are the same as standard type.

Refer to page 31 for details.

| Bore size
 $(\mathbf{m m})$ | Stroke Range
 $(\mathbf{m m})$ | \mathbf{A} | $\varnothing \mathbf{B}$
 $\mathbf{d 1 1}$ | \mathbf{D} | $\varnothing \mathbf{D}$ | $\mathbf{E E}$ | $\mathbf{P L}$ | $\mathbf{R T}$ | $\mathbf{L} \mathbf{1 2}$ | $\mathbf{K K}$ | $\mathbf{S W}$ | \mathbf{G} | $\mathbf{B G}$ | $\mathbf{L 8}$ | $\mathbf{V D}$ | $\mathbf{V A}$ | $\mathbf{W A}$ | $\mathbf{W B}$ | $\mathbf{W H}$ | $\mathbf{Z Z}$ | $\mathbf{Z Y}$ | \mathbf{E} | \mathbf{R} | $\mathbf{L 2}$ | $\mathbf{L 9}$ | \mathbf{H} | $\mathbf{S L}$ |
| :---: |
| $\mathbf{3 2}$ | to 500 | 22 | 30 | 12.2 | 12 | $\mathrm{G} 1 / 8$ | 13 | $\mathrm{M} 6 \times 1$ | 6 | $\mathrm{M} 10 \times 1.25$ | 10 | 32 | 16 | 94 | 4 | 4 | 4 | 7 | 26 | 146 | 190 | 47 | 32.5 | 15 | 4 | 48 | 10 |
| $\mathbf{4 0}$ | to 500 | 24 | 35 | 14.2 | 16 | $\mathrm{G} 1 / 4$ | 14 | $\mathrm{M} 6 \times 1$ | 6.5 | $\mathrm{M} 12 \times 1.25$ | 13 | 37.5 | 16 | 105 | 4 | 4 | 5 | 9 | 30 | 163 | 213 | 54 | 38 | 17 | 4 | 54 | 12 |
| $\mathbf{5 0}$ | to 600 | 32 | 40 | 19 | 20 | $\mathrm{G} 1 / 4$ | 15.5 | $\mathrm{M} \times \times 1.25$ | 8 | $\mathrm{M} 16 \times 1.5$ | 17 | 37.5 | 16 | 106 | 4 | 4 | 6 | 10.5 | 37 | 179 | 244 | 66 | 46.5 | 24 | 5 | 69 | - |
| $\mathbf{6 3}$ | to 600 | 32 | 45 | 19 | 20 | $\mathrm{G} 3 / 8$ | 16.5 | $\mathrm{M} 8 \times 1.25$ | 8 | $\mathrm{M} 16 \times 1.5$ | 17 | 45 | 16 | 121 | 4 | 4 | 9 | 12 | 37 | 194 | 259 | 77 | 56.5 | 24 | 5 | 69 | - |
| $\mathbf{8 0}$ | to 800 | 40 | 45 | 23 | 25 | $\mathrm{G} 3 / 8$ | 19 | $\mathrm{M} 10 \times 1.5$ | 10 | $\mathrm{M} 20 \times 1.5$ | 22 | 45 | 17 | 128 | 4 | 4 | 11.5 | 14 | 46 | 218 | 300 | 99 | 72 | 30 | - | 86 | - |
| $\mathbf{1 0 0}$ | to 800 | 40 | 55 | 23 | 25 | $\mathrm{G} 1 / 2$ | 19 | $\mathrm{M} 10 \times 1.5$ | 10 | $\mathrm{M} 20 \times 1.5$ | 22 | 50 | 17 | 138 | 4 | 4 | 17 | 15 | 51 | 233 | 320 | 118 | 89 | 32 | - | 91 | - |

ISO Cylinder: Smooth cylinder Double Acting, Single Rod Series C96Y $\varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100, \varnothing 125$

Designed with a low sliding resistance of the piston, this air cylinder is ideal for applications such as contact pressure control, which requires smooth movements at low pressure.

Low sliding resistance

Min. operating pressure -0.01 MPa

Minimum Stroke for

 Auto Switch MountingRefer to page 44 for "Minimum Stroke for Auto Switch Mounting".

Sliding resistance
Bi-directional low-friction operation possible.
Pressure can be controlled regardless of its direction.

Application Example
Smooth cylinder combined with precision regulator (e.g. Series IR)

Specifications

Bore size (mm)	32	40	50	63	80	100	125
Action	Double acting						
Fluid	Air						
Proof pressure	1.05 MPa						
Max. operating pressure	0.7 MPa						
Min. operating pressure	0.02 MPa		0.01 MPa				
Ambient and fluid temperature	Without auto switch: -10 to $70^{\circ} \mathrm{C}$ * With auto switch: -10 to $60^{\circ} \mathrm{C}^{*}$						
Lubrication	Not required (Non-lube)						
Operating piston speed	5 to $500 \mathrm{~mm} / \mathrm{s}$						
Allowable stroke tolerance	Up to 250 st: ${ }^{+1.0}{ }_{0}, 251$ to 1000 st: ${ }_{0}^{+1.4}$						
Cushion	Non						
Port size	G 1/8	G 1/4	G 1/4	G 3/8	G 3/8	G 1/2	G 1/2
Mounting	Basic, Axial foot, Rod end flange, Head end flange, Single clevis, Double clevis, Center trunnion						
Allowable air leak	$0.5 \mathrm{~L} / \mathrm{min}$ (ANR)						

* No freezing

Dimensions are the same as standard type. Refer to page 31 for details.

Maximum stroke

Bore size (mm)	Max. stroke*
32	800
40	800
50	1000
63	1000
80	1000
100	1000
125	1000

Intermediate strokes are available.

* Please consult with SMC for longer strokes.

Accessories

Mounting		Basic	Foot	Rod end flange	Head end flange	Single clevis	Double clevis	Center trunnion
Standard	Rod end nut	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
	Clevis pin	-	-	-	-	-	-	-
Option	Piston rod ball joint	\bigcirc						
	Rod clevis	\bigcirc						
	Rod boot	-	-	-	-	-	-	-

[^2]
ISO Cylinder: Smooth cylinder Double Acting, Single Rod

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Rod cover	Aluminum die-casted	
2	Head cover	Aluminum die-casted	
3	Cylinder tube	Aluminum alloy	
4	Piston rod	Carbon steel	
5	Piston	Aluminum alloy	
$6-1$	Cushion ring	Steel	
$6-2$	Cushion ring	Steel	
7	Tie-rod	Carbon steel	
8	Tie-rod nut	Steel	
9	Flat washer	Steel	$\varnothing 80$ and $\varnothing 100$
10	Rod end nut	Steel	
11	Cushion valve	Steel wire	
12	Bushing	Bearing alloy	
13	Snap ring	Steel for spring	$\varnothing 40$ to $\varnothing 125$
14	Rod seal holder	Stainless steel	$\varnothing 125$
15	Snap ring	Steel for spring	$\varnothing 125$
16	Wearing	Resin	
17	Piston seal	NBR	
18	Rod seal	NBR	
19	Cylinder tube gasket	NBR	
20	Cushion valve seal	NBR	
21	Piston gasket	NBR	
22	Spring washer	Steel	
23	Piston nut	Steel	
24	Magnet		

Replacement Parts: Seal Kit

Bore size (mm)	Kit no.	Contents
32	C96Y32-PS	Kits include items (16) to (19).
40	C96Y40-PS	
50	C96Y50-PS	
63	C96Y63-PS	
80	C96Y80-PS	
100	C96Y100-PS	
125	C96Y125-PS	

* Seal kits consist of items (16) to (19) contained in one kit, and can be orderd using the number for each respective tube bore size.
* Do not use grease not specified.

Order using the following part numbers when only maintenance grease is needed.

Volume	Part no.
5 g	GR-L-005
10 g	GR-L-010
150 g	GR-L-150

Smooth Cylinder Specific Product Precautions 1

Be sure to read before handling.
Refer to Back cover for Safety Instructions and pages 59 to 64 for Actuator and Auto Switch Precautions.

Recommended Pneumatic Circuit

Refer to the diagrams below when controlling speed with the smooth cylinder.

\triangle Warning

Horizontal operation (Speed control)

I

Dual speed controller
Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip. More stable low speed operation can be achieved than meter-in circuit alone.

Vertical operation (Speed control)

(1)Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip.*
(2)Depending on the size of the load, installing a regulator with check valve at position (b) can reduce lurching during descent and operation delay during ascent.
As a guide,
when W + Poa>PoA,
adjust \mathbf{P}_{1} to make $\mathbf{W}+\mathbf{P}_{\mathbf{1}} \mathbf{a}=\mathbf{P} \mathbf{0} \mathbf{A}$.

II

Meter-in speed controller

Meter-in speed controllers can reduce lurching while controlling the speed. The two adjustment needles facilitate adjustment.

II

(1) Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip.*
(2) Installing a regulator with check valve at position (c) can reduce lurching during descent and operation delay during ascent.
As a guide,
adjust \mathbf{P}_{2} to make $\mathbf{W}+\mathbf{P} \mathbf{2 A}=\mathbf{P o a}$.

Smooth Cylinder Specific Product Precautions 2

Be sure to read before handling.
Refer to Back cover for Safety Instructions and pages 59 to 64 for Actuator and Auto Switch Precautions.

Lubricant

\triangle Caution

1. Operate without lubrication.

Lubrication may cause malfunction.
2. Do not use grease not specified by SMC.

Using grease other than that specified may cause malfunction.

- Order using the following part numbers when only maintenance grease is needed.
Grease

Volume	Part no.
5 g	GR-L-005
10 g	GR-L-010
150 g	GR-L-150

3. Do not wipe off grease from the sliding part of the air cylinder.
Wiping grease from the sliding part of the air cylinder forcefully may cause malfunction.

Air Source

\triangle Caution

1. Take measure to prevent pressure fluctuations.

Pressure fluctuations may cause malfunction.

Series C96
Auto Switch Mounting 1
Minimum Stroke for Auto Switch Mounting

Auto switch model	Number of auto switch mounted										(mm)
		Center trunnion							Support bracket other than Center trunnion		
		ø32	¢40	${ }^{\circ} 50$	${ }^{\circ} 63$	${ }^{\circ} 80$	8100	8125	${ }^{\circ} 32,040,050, ø 63$	¢80, 8100	${ }_{6} 125$
D-A9■	1 switch, 2 switches (Different side, Same side)	70	75		80	85	95	100	15		
	Other qty.	$\begin{array}{\|l\|} \hline 70+40(n-4) / 2 \\ n=4,8,12,16 \cdots \end{array}$	$\begin{aligned} & 75+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{array}{\|l} \hline 80+40(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{array}$	$\begin{aligned} & \hline 85+40(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 95+40(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 100+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{gathered} 15+40(n-2) / 2 \\ n=2,4,6,8 \cdots \end{gathered}$		
D-A9■V	1 switch, 2 switches (Different side, Same side)	45	50		55	60	70	75	10		
	Other qty.	$\begin{array}{\|l\|} \hline 45+30(n-4) / 2 \\ n=4,8,12,16 \ldots \\ \hline \end{array}$	$\begin{aligned} & 50+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 55+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 60+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 70+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 75+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{gathered} 10+30(n-2) / 2 \\ n=2,4,6,8 \cdots \end{gathered}$		
$\begin{array}{\|l} \text { D-M9■ } \\ \text { D-M9 } \square \mathbf{W} \end{array}$	1 switch, 2 switches (Different side, Same side)	75	80		85	90	95	105	15		
	Other qty.	$\begin{aligned} & 75+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 80+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 85+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 90+40(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 95+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 105+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{gathered} 15+40(n-2) / 2 \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$		
$\left\|\begin{array}{l} \text { D-M9 } \square V \\ \text { D-M9 } \square \mathrm{WV} \end{array}\right\|$	1 switch, 2 switches (Different side, Same side)	50	55		60	65	70	80	10		
	Other qty.	$\begin{aligned} & \hline 50+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 55+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$		$\begin{aligned} & 60+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 65+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 70+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & \hline 80+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{gathered} 10+30(n-2) / 2 \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$		
D-M9■AL	1 switch, 2 switches (Different side, Same side)	80	85		90	95	100	110	15		
	Other qty.	$\begin{array}{\|l\|} \hline 80+40(n-2) / 2 \\ n=4,8,12,16 \ldots \\ \hline \end{array}$	$\begin{aligned} & 85+40(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{array}{\|l\|} \hline 90+40(n-2) / 2 \\ n=4,8,12,16 \ldots \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 95+40(n-2) / 2 \\ n=4,8,12,16 \ldots \\ \hline \end{array}$	$\begin{aligned} & 100+40(n-2) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 110+40(n-2) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{gathered} 15+40(n-2) / 2 \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$		
D-M9■AVL	1 switch, 2 switches (Different side, Same side)	55	60		65	70	75	85	15		
	Other qty.	$\begin{aligned} & 55+30(n-2) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 60+30(n-2) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$		$\begin{aligned} & 65+30(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 70+30(n-2) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 75+30(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 85+30(n-2) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{gathered} 15+30(n-2) / 2 \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$		
$\begin{array}{\|l\|} \hline \text { D-A3 } \\ \text { D-G39 } \\ \text { D-K39 } \end{array}$	2 switches (Different side)	60	65		75	80	85	90	35		
	2 switches (Same side)	90	95		100	105	110	125	100		
	Other qty. (Different side)	$\begin{aligned} & 60+30(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 65+30(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 75+30(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 80+30(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 85+30(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 90+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{gathered} 35+30(n-2) \\ n=2,3,4 \cdots \end{gathered}$		
	Other qty. (Same side)	$\begin{gathered} 90+100(n-2) \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$	$\begin{gathered} 95+100(\mathrm{n}-2) \\ \mathrm{n}=2,4,6,8 \cdots \end{gathered}$		$\begin{array}{\|c\|} \hline 100+100(n-2) \\ n=2,4,6,8 \cdots \\ \hline \end{array}$	$\begin{gathered} 105+100(n-2) \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 110+100(\mathrm{n}-2) \\ \mathrm{n}=2,4,6,8 \cdots \\ \hline \end{array}$	$\begin{gathered} 125+100(n-2) \\ n=2,4,6,8 \cdots \end{gathered}$	$\begin{gathered} 100+100(n-2) \\ n=2,3,4 \cdots \end{gathered}$		
	1 switch	60	65		75	80	85	90	10		
D-A44	2 switches (Different side)	70	75		80		85	90	35		
	2 switches (Same side)	70	75		80		85	90	55		
	Other qty. (Different side)	$\begin{array}{\|l\|} \hline 70+30(n-2) \\ n=2,4,6,8 \cdots \\ \hline \end{array}$	$\begin{aligned} & 75+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$		$\begin{aligned} & 80+30(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$		$\begin{aligned} & 85+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 90+30(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{gathered} 35+30(n-2) \\ n=2,3,4 \ldots \end{gathered}$		
	Other qty. (Same side)	$\begin{array}{\|l\|} \hline 70+50(n-2) \\ n=2,4,6,8 \cdots \\ \hline \end{array}$	$\begin{aligned} & 75+50(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$		$\begin{aligned} & 80+50(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline 85+50(n-2) \\ n=2,4,6,8 \cdots \\ \hline \end{array}$	$\begin{aligned} & 90+50(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{gathered} 55+50(n-2) \\ n=2,3,4 \cdots \end{gathered}$		
	1 switch	70	75		80		85	90	10		
$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \end{aligned}$	1 switch, 2 switches (Different side, Same side)	60 80			105	110	115		15 20		
	Other qty. (Same side)	$\begin{aligned} & 60+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 80+55(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 105+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 110+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 115+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$		$\begin{array}{c\|} \hline 15+55(\mathrm{n}-2) / 2 \\ \mathrm{n}=2,4,6,8 \cdots \\ \hline \end{array}$	$\begin{gathered} 20+55(n-2) / 2 \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$	
D-A59W	2 switches (Different side, Same side)	60	70	85	110	115	120		20	25	
	Other qty. (Same side)	$\begin{array}{\|l\|} \hline 60+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{array}$	$\begin{array}{\|l\|} \hline 70+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{array}$	$\begin{aligned} & 85+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 110+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 115+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{gathered} 120+55(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$		$\begin{aligned} & 20+55(n-2) / 2 \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{gathered} 25+55(n-2) / 2 \\ n=2,4,6,8 \cdots \end{gathered}$	
	1 switch	60	70	85	110	115	120		15	25	
D-F5■ D-J5 D-F5 D-J59W D-F5BAL D-F59F	2 switches (Different side, Same side)	90	95		110	115	120	130	15	25	
	Other qty. (Same side)	$\begin{aligned} & 90+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 95+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 110+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 115+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 120+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 130+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{array}{\|l\|} \hline 15+55(n-2) / 2 \\ n=2,4,6,8 \cdots \\ \hline \end{array}$	$\begin{gathered} 25+55(n-2) / 2 \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$	
	1 switch	90	95		110	115	120	130	10	25	
D-F5NTL	2 switches (Different side, Same side)	100	105		120	125	130	140	15	25	30
	Other qty. (Same side)	$\begin{aligned} & 100+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 105+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$		$\begin{aligned} & 120+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 125+55(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 130+55(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 140+55(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 15+55(n-2) / 2 \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{array}{\|c\|} \hline 25+55(n-2) / 2 \\ n=2,4,6,8 \cdots \\ \hline \end{array}$	$\begin{aligned} & 30+55(n-2) / 2 \\ & n=2,4,6,8 \cdots \end{aligned}$
	1 switch	100	105		120	125	130	140	10	25	30
 D-Z7 \square D-Z80 D-Y59 D-Y7P D-Y7 $\square W$	1 switch, 2 switches (Different side, Same side)	80	85 90			95	100	105	15		
	Other qty.	$\begin{aligned} & 80+40(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$	$85+40(n-4) / 2$ $90+40(n-4) / 2$ $n=4,8,12,16 \ldots$ $n=4,8,12,16 \ldots$			$\begin{aligned} & 95+40(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 100+40(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 105+40(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{gathered} 15+40(n-2) / 2 \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$		
$\begin{aligned} & \text { D-Y69■ } \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$	1 switch, 2 switches (Different side, Same side)	60	65		70	75	85		10		
	Other qty.	$\begin{array}{\|l\|} \hline 60+30(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{array}$	$\begin{aligned} & 65+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & \hline 70+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 75+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 85+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{gathered} 10+30(n-2) / 2 \\ n=2,4,6,8 \cdots \end{gathered}$		
D-Y7BAL	1 switch, 2 switches (Different side, Same side)	85	90		100	105	110	115	20		
	Other qty.	$\begin{aligned} & 85+45(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 90+45(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 100+45(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 105+45(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 110+45(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 115+45(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{gathered} 20+45(n-2) / 2 \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$		
D-P4DWL	1 switch, 2 switches (Different side, Same side)	120		130		140		150	15		20
	Other qty.	$\begin{aligned} & 120+65(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$		$\begin{aligned} & 130+65(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$		$\begin{aligned} & 140+65(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$		$\begin{aligned} & 150+65(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{gathered} 15+65(n-2) / 2 \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$		$\begin{gathered} \hline 20+65(n-2) / 2 \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$

Auto Switch Proper Mounting Position

	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$		$\begin{array}{\|l} \text { D-M9 } \square \\ \text { D-M9 } \square V \\ \text { D-M9 } \square W \\ \text { D-M9 } \square W V \\ \text { D-M9 } \square \text { AL } \\ \text { D-M9 } \square \text { AVL } \end{array}$		$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \end{aligned}$		D-A59W		$\begin{aligned} & \text { D-F5■W } \\ & \text { D-J59W } \\ & \text { D-F5 } \\ & \text { D-J5 } \\ & \text { D-F5BAL } \\ & \text { D-F59F } \end{aligned}$		D-F5NTL		$\begin{aligned} & \text { D-A3 } \square \\ & \text { D-A44 } \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$		D-Z7 \square D-Z80 D-Y59 \square D-Y69 \square D-Y7P D-Y7PV D-Y7 $\square W$ D-Y7 $\square W V$ D-Y7BAL		D-P4DWL	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B
32	6.5	4	10.5	8	0.5	0	4.5	2	7	4.5	12	9.5	0.5	0	4	1.5	3.5	1
40	6.5	4	10.5	8	0.5	0	4.5	2	7	4.5	12	9.5	0.5	0	4	1.5	3.5	1
50	7	4.5	11	8.5	1	0	5	2.5	7.5	5	12.5	10	1	0	4.5	2	4	1.5
63	7	4.5	11	8.5	1	0	5	2.5	7.5	5	12.5	10	1	0	4.5	2	4	1.5
80	10	8.5	14	12.5	4	2.5	8	6.5	10.5	9	15.5	14	4	2.5	7.5	6	7	5.5
100	10	8.5	14	12.5	4	2.5	8	6.5	10.5	9	15.5	14	4	2.5	7.5	6	7	5.5
125	12	12	16	16	6	6	10	10	12.5	12.5	17.5	17.5	6	6	9.5	9.5	9	9

Note) Adjust the auto switch after confirming the operation to set actually.

Auto Switch Proper Mounting Height

	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \\ & \text { D-M9 } \square \text { AL } \end{aligned}$		D-A9 \square V		$\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { AVL } \end{aligned}$		$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A59W } \end{aligned}$		$\begin{aligned} & \text { D-F5 } \square \\ & \text { D-J5 } \square \\ & \text { D-F59F } \\ & \text { D-F5 } \square W \\ & \text { D-J59W } \\ & \text { D-F5BAL } \\ & \text { D-F5NTL } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { D-A3 } \square \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$		D-A44		$\begin{aligned} & \text { D-Z7■ } \\ & \text { D-Z80 } \\ & \text { D-Y59 } \\ & \text { D-Y7P } \\ & \text { D-Y7■W } \\ & \text { D-Y7BAL } \end{aligned}$		$\begin{aligned} & \text { D-Y69 } \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$		D-P4DWL	
	Hs	Ht																		
32	24.5	23	27.5	23	30.5	23	35	24.5	32.5	25	67	27.5	77	27.5	25.5	23	26.5	23	38	31
40	28.5	25.5	31.5	25.5	34	25.5	38.5	27.5	36.5	27.5	71.5	27.5	81.5	27.5	29.5	26	30	26	42	33
50	33.5	31	36	31	38.5	31	43.5	34.5	41	34	77	-	87	-	33.5	31	34.5	31	46.5	39
63	38.5	36	40.5	36	43	36	48.5	39.5	46	39	83.5	-	93.5	-	39	36	40	36	51.5	44
80	46.5	45	49	45	52	45	55	46.5	52.5	46.5	92.5	-	103	-	47.5	45	48.5	45	58	51.5
100	54	53.5	57	53.5	59.5	53.5	62	55	59.5	55	103	-	113.5	-	55.5	53.5	56.5	53.5	65.5	60.5
125	65.5	64.5	68.5	64.5	71	64.5	71.5	66.5	70.5	66.5	115	-	125	-	67.5	65	68.5	65	76.5	72

Series C96

Auto Switch Mounting 2

Auto Switch Mounting Bracket Part No.

Auto switch model	Bore size (mm)						
	ø32	ø40	ø50	ø63	$\varnothing 80$	$\varnothing 100$	$\varnothing 125$
D-A9■/A9 $\square V$ D-M9 $\square /$ M9 $\square V$ D-M9 \square W/M9 \square WV D-M9■AL/M9■AVL	BMB5-032	BMB5-032	BA7-040	BA7-040	BA7-063	BA7-063	BA7-080
$\begin{aligned} & \text { D-A3■/A44 } \\ & \text { D-G39/K39 } \\ & \hline \end{aligned}$	BMB2-032	BMB2-040	BMB1-050	BMB1-063	BMB1-080	BMB1-100	BS1-125
$\begin{array}{\|l} \hline \text { D-A5 } \square / \text { A6 } \square \\ \text { D-A59W } \\ \text { D-F5 } \square / J 5 \square \\ \text { D-F5 } \square \text { W/J59W } \\ \text { D-F59F } \\ \text { D-F5BAL } \\ \text { D-F5NTL } \\ \hline \end{array}$	BT-03	BT-03	BT-05	BT-05	BT-06	BT-06	BT-08
D-P4DWL	BMB3T-040	BMB3T-040	BMB3T-050	BMB3T-050	BMB3T-080	BMB3T-080	BAP2T-080
$\begin{aligned} & \text { D-Z7■/Z80 } \\ & \text { D-Y59 } \square / Y 69 \square \\ & \text { D-Y7P/Y7PV } \\ & \text { D-Y7 } \square W \\ & \text { D-Y7■WV } \\ & \text { D-Y7BAL } \end{aligned}$	BMB4-032	BMB4-032	BMB4-050	BMB4-050	BA4-063	BA4-063	BA4-080

- Mounting example for $\mathrm{D}-\mathrm{A} 9 \square(\mathrm{~V})$, M9 $\square(\mathrm{V})$, M9 $\square \mathrm{W}(\mathrm{V}), \mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V}) \mathrm{L}$
[Mounting screws set made of stainless steel]
The following set of mounting screws made of stainless steel is also available. Use it in accordance with the operating environment.
(Please order the mounting bracket separately, since it is not included.)
BBA1: For D-A5/A6/F5/J5
Note 1) For details on BBA1, refer to page 50
"D-F5BAL" switch is set on the cylinder with the stainless steel screws above when shipped from factory
When a switch is shipped independently, "BBA1" screws are attached
Note 2) When using type $D-M 9 \square A(V) L$ or Y7BAL, please do not use the iron set screws included with the auto switch mounting bracket (BMB5-032, BA7- $\square \square \square$, BAB4- $\square \square \square$, BA4- $\square \square \square$) shown above, instead order the set of stainless steel set screws (BBA1), and please use the stainless steel set screws (M4 x 6L) included in BBA1.

Operating Range

							(mm)
Auto switch model	Bore size						
	32	40	50	63	80	100	125
D-A9 $\square / 49 \square$ V	7	7.5	8.5	9.5	9.5	10.5	12
$\begin{aligned} & \text { D-M9 } \square / M 9 \square V \\ & \text { D-M9 } \square \text { W/M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { AL/M9 } \square \text { AVL } \end{aligned}$	4	4.5	5	6	6	6	7
D-Z7 $\square / \mathbf{Z 8 0}$	7.5	8.5	7.5	9.5	9.5	10.5	13
D-A5 $\square /$ A6 \square	9	9	10	11	11	11	10
D-A59W	13	13	13	14	14	15	17
D-A3 $\square / \mathrm{A} 44$	9	9	10	11	11	11	10
$\begin{aligned} & \text { D-Y59 } \square / Y 69 \square \\ & \text { D-Y7P/Y7 } \square V \\ & \text { D-Y7 } \square W / Y 7 \square W V \\ & \text { D-Y7BAL } \end{aligned}$	5.5	5.5	7	7.5	6.5	5.5	7
```D-F5\square/J5\square D-F5\squareW/J59W D-F5BAL/F5NTL D-F59F```	3.5	4	4	4.5	4.5	4.5	5
D-G39/K39	9	9	9	10	10	11	11
D-P4DWL	4	4	4	4.5	4	4.5	4.5

[^3]| Type | Auto switch model | Electrical entry | Features |
| :---: | :---: | :---: | :---: |
| Solid state switch | D-M9NV, M9PV, M9BV | Grommet (Perpendicular) | - |
|  | D-Y69A, Y69B, Y7PV |  |  |
|  | D-M9NWV, M9PWV, M9BWV |  | Diagnosis indication (2-color) |
|  | D-Y7NWV, Y7PWV, Y7BWV |  |  |
|  | D-M9NAVL, M9PAVL, M9BAVL |  | Water resistant (2-color) |
|  | D-Y59A, Y59B, Y7P | Grommet (In-line) | - |
|  | D-F59, F5P, J59 |  |  |
|  | D-Y7NW, Y7PW, Y7BW |  | Diagnosis indication (2-color) |
|  | D-F59W, F5PW, J59W |  |  |
|  | D-F5BAL, Y7BAL |  | Water resistant (2-color) |
|  | D-F5NTL |  | With timer |
|  | D-P5DWL |  | Strong magnetic field resistant (2-color) |
| Reed switch | D-A93V, A96V | Grommet (Perpendicular) | - |
|  | D-A90V |  | Without indicator light |
|  | D-A67, Z80 | Grommet (In-line) |  |
|  | D-A53, A56, Z73, Z76 |  | - |
| * For details about auto switches with pre-wired connector, refer to pages 1328 and 1329 in Best Pneumatics No. 2. <br> * Normally closed (NC = b contact), solid state switch (D-F9G, F9H, Y7G, Y7H type) are also available. For details, refer to page 1290 in Best Pneumatics No.2. |  |  |  |

## $\triangle$ Specific Product Precautions

## Adjustment

## © Warning

1. Do not open the cushion valve above the stopper.

Cushion valves are provided with a crimp ( $\varnothing 32$ ) or a retaining ring ( $\varnothing 40$ to $\varnothing 125$ ) as a stopping mechanism, and the cushion valve should not be opened above that point.
If air is supplied and operation started without confirming the above condition, the cushion valve may be ejected from the cover.
2. Be certain to activate the air cushion at the stroke end.

When it is intended to use the cushion valve in the fully opened position, select a style with a damper. If this is not done, the tie-rods or piston rod assembly will be damaged.
3. When replacing brackets, use the hexagon wrenches shown below.

Bore size (mm)	Width across flats	Tightening torque (N•m)
$\mathbf{3 2 , 4 0}$	4	4.8
$\mathbf{5 0 , 6 3}$	5	10.4
$\mathbf{8 0 , 1 0 0}$	6	18.2
$\mathbf{1 2 5}$	10	28.5

## Mounting Bracket Tie-rod Mounting

<Applicable Auto Switch><br>Solid state switch ... D-G39, D-K39<br>Reed switch - D-A33, D-A34, D-A44



1. Loosen the auto switch mounting screws at both sides to pull down the hook.
2. Put an auto switch mounting band on the cylinder tube and set it at the auto switch mounting position, and then hook the band.
3. Screw lightly the auto switch mounting screw.
4. Set the whole body to the detecting position by sliding, tighten the mounting screw to secure the auto switch. (The tightening torque should be about 2 to $3 \mathrm{~N} \cdot \mathrm{~m}$.)
5. Modification of the detecting position should be made in the state of 3 .

## Auto Switch Mounting Bracket Part No. (Band)

Cylinder	Applicable bore size (mm)						
series	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$
C96	BMB2	BMB2	BMB1	BMB1	BMB1	BMB1	BS1
	-032	-040	-050	-063	-080	-100	-125

## <Applicable Auto Switch> <br> Solid state switch ... D-M9N(V), D-M9P(V), D-M9B(V) D-M9NW(V), D-M9PW(V), D-M9BW(V) D-M9NA(V), D-M9PA(V), D-M9BA(V) <br> Reed switch <br> D-A90(V), A93(V), A96(V)

## How to Mount and Move the Auto Switch



1. Fix it to the detecting position with a set screw by installing an auto switch mounting bracket in cylinder tie-rod and letting the bottom surface of an auto switch mounting bracket contact the cylinder tube firmly
2. Fix it to the detecting position with a set screw (M4).
(Use a hexagon wrench.)
3. Fit an auto switch into the auto switch mounting groove to set it roughly to the mounting position for an auto switch.
4. After confirming the detecting position, tighten up the mounting screw (M2.5) attached to an auto switch, and secure the auto switch.
5. When changing the detecting position, carry out in the state of 3 .

Note 1) To protect auto switches, ensure that main body of an auto switch should be embedded into auto switch mounting groove with a depth of 15 mm or more.
Note 2) Set the tightening torque of a hexagon socket head set screw (M4) to be 1.0 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$.
Note 3) When tightening an auto switch mounting screw (M2.5), use a watchmaker's screwdriver with a grip diameter of 5 to 6 mm .
Also, set the tightening torque to be 0.05 to $0.15 \mathrm{~N} \cdot \mathrm{~m}$. As a guide, turn $90^{\circ}$ from the position where it comes to feel tight.

## Auto Switch Mounting Bracket Part No.

 (Including Bracket, Set Screw)| Cylinder | Applicable bore size (mm) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| series | $\mathbf{3 2}$ | $\mathbf{4 0}$ | $\mathbf{5 0}$ | $\mathbf{6 3}$ | $\mathbf{8 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 2 5}$ |  |
| C96 | BMB5 | BMB5 | BA7 | BA7 | BA7 | BA7 | BA7 |  |
|  | -032 | -032 | -040 | -040 | -063 | -063 | -080 |  |

Note 1) When using type $\mathrm{D}-\mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V}) \mathrm{L}$, please order stainless steel screw set BBA1 separately (page 50), and use the stainless steel set screws, after selecting set screws of the appropriate length for the cylinder series-as shown in the table above
Note 2) Color or gloss differences in the metal surfaces have no effect on metal performance
The special properties of the chromate (trivalent) applied to the main body of the auto switch mounting bracket for BA7- $\square$ and BMB5- $\square$ result in differences in coloration depending on the production lot, but these have no adverse impact on corrosion resistance

## <Applicable Auto Switch>

Solid state switch ... D-Y59A, Y69A, D-Y7P(V)

## D-Y7NW(V), Y7PW(V), Y7BW(V) D-Y7BAL D-Z73, Z76, Z80

Reed switch
How to Mount and Move the Auto Switch


Note 1) When tightening an auto switch mounting screw, use a watchmaker's screwdriver with a handle diameter of 5 to 6 mm . Also, set the tightening torque to be 0.05 to $0.1 \mathrm{~N} \cdot \mathrm{~m}$.
As a guide, turn $90^{\circ}$ from the position where it comes to feel tight. Set the tightening torque of a hexagon socket head set screw (M4 x 0.7) to be 1.0 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$.

1. Fix it to the detecting position with a set screw by installing an auto switch mounting bracket in cylinder tie-rod and letting the bottom surface of an auto switch mounting bracket contact the cylinder tube firmly. (Use a hexagon wrench.)
2. Fit an auto switch into the auto switch mounting groove to set it roughly to the mounting position for an auto switch.
3. After confirming the detecting position, tighten up the mounting screw attached to an auto switch, and secure the auto switch.
4. When changing the detecting position, carry out in the state of 2 .

* To protect auto switches, ensure that main body of an auto switch should be embedded into auto switch mounting groove with a depth of 15 mm or more.


## Auto Switch Mounting Bracket Part No. (Including Bracket, Set Screw)

Cylinder series	Applicable bore size (mm)						
	32	40	50	63	80	100	125
C96	$\begin{aligned} & \text { BMB4 } \\ & -032 \end{aligned}$	$\begin{aligned} & \text { BMB4 } \\ & -032 \end{aligned}$	$\begin{gathered} \text { BMB4 } \\ -050 \end{gathered}$	$\begin{gathered} \text { BMB4 } \\ -050 \end{gathered}$	$\begin{aligned} & \text { BA4 } \\ & -063 \end{aligned}$	$\begin{aligned} & \text { BA4 } \\ & -063 \end{aligned}$	$\begin{aligned} & \text { BA4 } \\ & -080 \end{aligned}$

Note 2) When using type D-Y7BAL, please order stainless steel screw set BBA1 separately (page 50 ), and use the stainless steel set screws, after selecting set screws of the appropriate length for the cylinder series - as shown in the table above.

## <Applicable Auto Switch> <br> Solid state switch ... D-P4DWL

How to Mount and Move the Auto Switch


1. Slightly screw the hexagon socket head cap screw ( $\mathrm{M} 4 \times 0.7 \times 8 \mathrm{~L}$ ) into the M4 tapped portion of auto switch mounting bracket. (2 locations) Use caution that the tip of the hexagon socket head cap screw should not stick out to the concave portion of auto switch mounting bracket.
2. Put a hexagon socket head cap screw ( $\mathrm{M} 3 \times 0.5 \times 14 \mathrm{~L}$ ) through the auto switch's through-hole (2 locations), and then push it down into the M3 tapped part on the auto switch mounting bracket while turning it lightly.
3. Place the concave part of the auto switch mounting bracket into the cylinder tie-rod, and slide the auto switch mounting bracket in order to set roughly to the detecting position.
4. After reconfirming the detecting position, tighten the M3 mounting screw to secure the auto switch by making the bottom face of auto switch attached to the cylinder tube. (Tightening torque of M3 screw should be 0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$.)
5. Tighten up M4 screw of auto switch mounting bracket to secure the auto switch mounting bracket. (Ensure that tightening torque of M4 screw should be set 1.0 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$.)

## Auto Switch Mounting Bracket Part No. (Including Bracket, Screw)

Cylinder	Applicable bore size (mm)							
series	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	
C96	BMB3T	BMB3T	BMB3T	BMB3T	BMB3T	BMB3T	BAP2T	
	-040	-040	-050	-050	-080	-080	-080	

## Mounting Bracket Tie-rod Mounting

<Applicable Auto Switch><br>Solid state switch ... D-F59, D-F5P<br>D-J59, D-J51, D-F5BAL<br>D-F59W, D-F5PW, D-J59W<br>D-F59F, D-F5NTL<br>Reed switch<br>D-A53, D-A54, D-A56, D-A64, D-A67<br>D-A59W



## Auto Switch Mounting Bracket Part No.

 (Including Bracket, Screw, Set Screw)| Cylinder | Applicable bore size (mm) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{3 2}$ | $\mathbf{4 0}$ | $\mathbf{5 0}$ | $\mathbf{6 3}$ | $\mathbf{8 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 2 5}$ |  |
| C96 | BT-03 | BT-03 | BT-05 | BT-05 | BT-06 | BT-06 | BT-08 |  |

[Mounting screws set made of stainless steel]
The following set of mounting screws made of stainless steel is also available. Use it in accordance with the operating environment.
(Please order the auto switch mounting bracket separately, since it is not included.) BBA1: For D-A5/A6/F5/J5
"D-F5BAL" switch is set on the cylinder with the stainless steel screws above when
shipped from factory.
When a switch is shipped independently, "BBA1" screws are attached.

Auto Switch Mounting Screw Set

Part no.	Contents				Applicable auto switch mounting bracket part no.	Applicable auto switch
	No.	Description	Size	Quantity		
BBA1	1	Auto switch mounting screw	M $4 \times 0.7 \times 8 \mathrm{~L}$	1	BT-प $\square$	$\begin{aligned} & \text { D-A5, A6 } \\ & \text { D-F5, J5 } \end{aligned}$
	2	Set screw	M4 x $0.7 \times 6 \mathrm{~L}$	2	$\begin{aligned} & \text { BT-03, BT-04, BT-05 } \\ & \text { BT-06, BT-08, BT-12 } \end{aligned}$	
					$\begin{aligned} & \text { BA4-040, BA4-063, BA4-080 } \\ & \text { BMB4-032, BMB4-050 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{D}-\mathrm{Z7}, \mathrm{Z8} \\ & \mathrm{D}-\mathrm{Y}, \mathrm{Y}, \mathrm{Y}, \mathrm{Y} 7 \end{aligned}$
					BMB5-032 BA7-040, BA7-063, BA7-080	$\begin{aligned} & \hline \text { D-A9 } \\ & \text { D-M9 } \end{aligned}$
	3	Set screw	M $4 \times 0.7 \times 8 \mathrm{~L}$	2	BT-16, BT-18A, BT-20	$\begin{aligned} & \hline \text { D-A5, A6 } \\ & \text { D-F5, J5 } \end{aligned}$
					$\begin{aligned} & \text { BS4-125, BS4-160 } \\ & \text { BS4-180, BS4-200 } \end{aligned}$	$\begin{aligned} & \mathrm{D}-\mathrm{Z7}, \mathrm{Z8} \\ & \mathrm{D}-\mathrm{Y}, \mathrm{Y}, \mathrm{Y}, \mathrm{Y} 7 \end{aligned}$
					BS5-125, BS5-160 BS5-180, BS5-200	$\begin{aligned} & \hline \text { D-A9 } \\ & \text { D-M9 } \end{aligned}$

## Series CP96/C96

## Sin?

These changes are dealt with Simple Specials System.

## 1 Change of Rod End Shape

## Applicable Series

Series	Description	Model	Action	Symbol for change   of rod end shape
	Standard type	C96S	Double acting, Single rod	XA0 to 30
		C96SW	Double acting, Double rod	XA0 to 30
	Smooth type	C96Y	Double acting, Single rod	XA0 to 30
CP96	Standard type	CP96S	Double acting, Single rod	XA0 to 30
		CP96SW	Double acting, Double rod	XA0 to 30

A. Precautions

1. SMC will make appropriate arrangements if no dimension, tolerance, or
finish instructions are given in the diagram.
2. Standard dimensions marked with "*" will be as follows to the rod diameter (D).
Enter any special dimension you desire.
$\mathrm{D} \leq 6 \rightarrow \mathrm{D}-1 \mathrm{~mm}, 6<\mathrm{D} \leq 25 \rightarrow \mathrm{D}-2 \mathrm{~mm}, \mathrm{D}>25 \rightarrow \mathrm{D}-4 \mathrm{~mm}$
3. In the case of double rod type and single acting retraction type, enter
the dimensions when the rod is retracted.
4. Only the single side of a double rod is able to manufacture.


## Auto Switch <br> 

Symbol : A30


# Simple Specials 2 <br> -XC14: Change of Trunnion Bracket Mounting Position 

These changes are dealt with Simple Specials System.

## 2 Change of Trunnion Bracket Mounting Position

The position for mounting the trunnion pivot bracket on the cylinder can be moved from the standard mounting position to any desired position.

## Applicable Series

Series	Description	Model	Action	Note
C96	Standard type	C96	Double acting, Single rod	
		C96W	Double acting, Double rod	



## $\triangle$ Precautions

1. Specify " $Z+1 / 2$ stroke" in the case the trunnion bracket position is not $-\mathrm{XC} 14 \mathrm{~A}, \mathrm{~B}$ or trunnion is not a center trunnion.
2. SMC will make appropriate arrangements if no dimension, tolerance, or finish instructions are given in the diagram.
3. The possible range of trunnion bracket mounting position is indicated in the table below.
4. Some trunnion mounting positions do not allow auto switch mounting Please consult with SMC for more information.

Series C96

Bore size	Trunnion bracket position			
	For -XC14		Reference : Standard (Center trunnion)	Minimum stroke
	Minimum	Maximum		
32	89	101 + stroke	$95+0.5$ stroke	
40	103	110 + stroke	$106.5+0.5$ stroke	
50	118	126 + stroke	$122+0.5$ stroke	0
63	128.5	130.5 + stroke	$129.5+0.5$ stroke	
80	148.5	151.5 + stroke	$150+0.5$ stroke	
100	161.5	158.5 + stroke	$160+0.5$ stroke	5
125	202.5	195.5 + stroke	$199+0.5$ stroke	10

Contact SMC for detailed dimensions, specifications, and lead times.

## 3 Heat Resistant Cylinder ( -10 to $150^{\circ} \mathrm{C}$ )

Air cylinder which changed the seal material and grease, so that it could be used even at higher temperature up to 150 from $-10^{\circ} \mathrm{C}$.

## Applicable Series

Series	Description	Model	Action	Note	Page (for std. model)
CP96	Air cylinder	CP96S	Double acting, Single rod		Page 4
		CP96SW	Double acting, Double rod		
C96	Air cylinder	C96S	Double acting, Single rod		
		C96SW	Double acting, Double rod		

## How to Order

Standard model no.
-XB6
Heat resistant cylinder
Specifications

Ambient temperature range	-10 to $150^{\circ} \mathrm{C}$
Seals materials	Fluororubber
Grease	Heat resistant grease
Specifications other than   above and external dimensions	Same as standard type

## $\measuredangle$ Warning

Precautions
Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

## 4 Cold Resistant Cylinder ( -40 to $70^{\circ} \mathrm{C}$ )

Note 1) Operate without lubrication from a pneumatic system lubricator
Note 2) Please contact SMC for details on the maintenance intervals for this cylinder, which differ from those of the standard cylinder.
Note 3) In principle, it is impossible to make built-in magnet type and the one with auto switch. But, as for the one with auto switch, and the heat resistant cylinder with heat resistant auto switch, since it will be differed depending on the series, please contact SMC.
Note 4) Piston speed is ranged from 50 to $500 \mathrm{~mm} / \mathrm{s}$.

Air cylinder which changed the seal material and grease, so that it could be used even at lower temperature down to $-40^{\circ} \mathrm{C}$.

## Applicable Series

Series	Description	Model	Action	Note	Page (for std. model)
C96	Air cylinder	C96S	Double acting,   Single rod	Except with switch, Mounting bracket is available with basic only,   Minimum operating pressure 0.2 MPa	
	C96SW	Double acting,   Double rod	Except with switch, Mounting bracket is available with basic only,   Minimum operating pressure 0.2 MPa	Page 24	

## How to Order



## Specifications

Ambient temperature range	-40 to $70^{\circ} \mathrm{C}$
Seals material	Low nitrile rubber
Grease	Cold resistant grease
Auto switch	Not mountable
Dimensions	Same as standard type
Additional specifications	Same as standard type

## \. Warning

## Precautions

Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

Note 1) Operate without lubrication from a pneumatic system lubricator
Note 2) Use dry air which is suitable for heatless air dryer, etc. not to cause the moisture to be frozen
Note 3) Please contact SMC for details on the maintenance intervals for this cylinder, which differ from those of the standard cylinder
Note 4) Mounting auto switch is impossible.

Contact SMC for detailed dimensions, specifications, and lead times.

## 5 With Heavy Duty Scraper

It is suitable for using cylinders under the environment, where there are much dusts in a surrounding area by using a heavy duty scraper on the wiper ring, or using cylinders under earth and sand exposed to the die-castied equipment, construction machinery, or industrial vehicles.

## Applicable Series

Series	Description	Model	Action	Note	Page (for std. model)
CP96	Air cylinder	CP96S	Double acting, Single rod	ø32 to ø100	Page 4
		CP96SW	Double acting, Double rod	ø32 to $\varnothing 100$	
C96	Air cylinder	C96S	Double acting, Single rod	ø32 to $\varnothing 100$	Page 24
		C96SW	Double acting, Double rod	$\varnothing 32$ to $\varnothing 100$	

## How to Order



## Specifications: Same as standard type. Dimensions: Same as standard type.

## © Caution

Do not replace heavy duty scrapers.

- Since heavy duty scrapers are press-fit, do not replace the cover only, but rather the entire rod cover assembly.


## 6 Tie-rod, Cushion Valve, Tie-rod Nut, etc. Made of Stainless Steel

When using in locations where the rust generation or corrosion likelihood exists, the standard parts material have been partly changed to the stainless steel.

## Applicable Series

Series	Description	Model	Action	Page (for std model)
CP96	Air cylinder	CP96S	Double acting, Single rod	Page 4
		CP96SW	Double acting, Double rod	
C96	Air cylinder	C96S	Double acting, Single rod	Page 24
		C96SW	Double acting, Double rod	

## How to Order



Specifications

Component parts changed to   stainless steel	Tie-rod, Tie-rod nut, Mounting bracket nut,   Spring washer, Cushion valve, Lock nut
Additional specifications	Same as standard type
Dimensions	Same as standard type

## Made to Order Specifications <br> Series <br> CP96/C96

## 7 Dual Stroke Cylinder/Double Rod Type

Two cylinders are constructed as one cylinder in a back-to-back configuration allowing the cylinder stroke to be controlled in three steps.

## Applicable Series

Series	Description	Model	Action	Note	Page (for std. model)
CP96	Air cylinder	CP96S	Double acting, Single rod	Except clevis and trunnion styles	Page 4
C96	Air cylinder	C96S	Double acting, Single rod	Except clevis and trunnion styles	Page 24

## How to Order



## Function



When air pressure is supplied to ports
$\boldsymbol{A}$ and $\mathbf{B}$, both $A$ and $B$ strokes retract.


When air pressure is supplied to ports A and D, B out strokes.

When air pressure is supplied to ports C and (D), both strokes A and B out strokes.

Dimensions (Dimensions other than below are the same as standard type.)


Contact SMC for detailed dimensions, specifications, and lead times.

## 8 Dual Stroke Cylinder/Single Rod Type

Two cylinders can be integrated by connecting them in line, and the cylinder stroke can be controlled in two stages in both directions.

## Applicable Series

Series	Description	Model	Action	Note	Page (for std. model)
CP96	Air cylinder	CP96S	Double acting, Single rod	Except trunnion style	Page 4
C96	Air cylinder	C96S	Double acting, Single rod	Except trunnion style	Page 24

## How to Order

CP96S	Mounting style Bore size - Stroke A + Stroke B-A - XC11

## Specifications: Same as standard type.

## Function



When air pressure is supplied to the port $B$, both $A$ and $B$ stokes retract.


When air pressure is supplied from port $\boldsymbol{A}$, the rod operates for A stroke.


When air pressure is supplied from port © , the rod operates for B stroke.

When air pressure is supplied from ports $\boldsymbol{A}$ and $\mathbf{C}$, the output force is doubled in the A stroke.

Dimensions (Dimensions other than below are the same as standard type.)

Symbol
9 Fluororubber Seals

## Applicable Series

Series	Description	Model	Action	Note	Page (for std. model)
CP96	Air cylinder	CP96S	Double acting, Single rod		Page 4
		CP96SW	Double acting, Double rod		
C96	Air cylinder	C96S	Double acting, Single rod		
		C96SW	Double acting, Double rod		

## How to Order



## Specifications

Seal material	Fluororubber
Ambient temperature range	With auto switch : -10 to $60^{\circ} \mathrm{C}$ (No freezing) Note1)   Without auto switch : -10 to $70^{\circ} \mathrm{C}$ (No freezing)
Specifications other   than above and   external dimensions	Same as standard type for each series

Symbol
10 With Coil Scraper

## -XC35

It gets rid of frost, ice, weld spatter, cutting chips adhered to the piston rod, and protects the seals, etc.

## Applicable Series

Series	Description	Model	Action	Note	Page (for std. model)
CP96	Air cylinder	CP96S	Double acting, Single rod	$\varnothing 32$ to $\varnothing 100$	Page 4
		CP96SW	Double acting, Double rod	$\varnothing 32$ to ø100	
C96	Air cylinder	C96S	Double acting, Single rod	$\varnothing 32$ to $\varnothing 100$	Page 24
		C96SW	Double acting, Double rod	$\varnothing 32$ to $\varnothing 100$	

## How to Order



## Specifications: Same as standard type.

Dimensions: Same as standard type. chemical and the operating temperature may not allow the use of this product.
Note 2) Cylinders with auto switches can also be produced;
however, auto switch related parts (auto switch units, mounting brackets, built-in magnets) are the same as standard products. Before using these, please contact SMC regarding their suitability for the operating environment.

Note 1) Please confirm with SMC, as the type of

## Series CP96/C96

Made to Order Specifications 4

Contact SMC for detailed dimensions, specifications, and lead times.

## 11 Made of Stainless Steel (With Hard Chrome Plated Piston Rod)

Applicable for uses where rust and corrosion are expected, such as by immersing in water.

## Applicable Series

Series	Description	Model	Action	Page (for std. model)
CP96	Air cylinder	CP96S	Double acting, Single rod	Page 4
		CP96SW	Double acting, Double rod	
C96	Air cylinder	C96S	Double acting, Single rod	
		C96SW	Double acting, Double rod	

Note) There is a maximum stroke limit for $\mathrm{C}(\mathrm{P}) 96$ cylinder.
Maximum Stroke

Series	Double acting, Single rod	Double acting, Double rod
CP96	$\varnothing 32: 1800$ $\varnothing 40$ to $\varnothing 100: 1700$ $\varnothing 125: 1600$	$1000$   (Same as standard type)
C96	$\varnothing 32: 1000$ $\varnothing 40$ to $\varnothing 100: 1700$ $\varnothing 125: 1600$	$1000$   (Same as standard type)

## Specifications

Parts changed to stainless steel	Piston rod, Rod end nut
Other specifications and   dimensions	Same as standard type

How to Order


## © Warning

1. There is a danger of sudden action by air cylinders if sliding parts of machinery are twisted, etc., and changes in forces occur.
In such cases, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be designed to avoid such dangers.
2. Install a protective cover when there is a risk of human injury
If a driven object and moving parts of a cylinder pose a danger of human injury, design the structure to avoid contact with the human body.
3. Securely tighten all stationary parts and connected parts so that they will not become loose.
Especially when a cylinder operates with high frequency or is installed where there is a lot of vibration, ensure that all parts remain secure.
4. A deceleration circuit may be required.

When a driven object is operated at high speed or the load is heavy, a cylinder's cushion will not be sufficient to absorb the impact. Install a deceleration circuit to reduce the speed before cushioning to relieve the impact. In this case, the rigidity of the machinery should also be examined.
5. Consider a possible drop in operating pressure due to a power outage, etc.
When a cylinder is used in a clamping mechanism, there is a danger of work pieces dropping if there is a decrease in clamping force due to a drop in circuit pressure caused by a power outage, etc. Therefore, safety equipment should be installed to prevent damage to machinery and/or human injury. Suspension mechanisms and lifting devices also require consideration for drop prevention.
6. Consider a possible loss of power source.

Measures should be taken to protect against human injury and equipment damage in the event that there is a loss of power to equipment controlled by air pressure, electricity or hydraulics, etc.
7. Design circuitry to prevent sudden lurching of driven objects.
When a cylinder is driven by an exhaust center type directional control valve or when starting up after residual pressure is exhausted from the circuit, etc., the piston and its driven object will lurch at high speed if pressure is applied to one side of the cylinder because of the absence of air pressure inside the cylinder. Therefore, select equipment and design circuits to prevent sudden lurching, because there is a danger of human injury and/or damage to equipment when this occurs.
8. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions, such as a power outage or a manual emergency stop.
9. Consider the action when operation is restarted after an emergency stop or abnormal stop.
Design the machinery so that human injury or equipment damage will not occur upon restart of operation. When the cylinder has to be reset at the starting position, install safe manual control equipment.

## $\triangle$ Warning

## 10.Confirm the specifications.

The products advertised in this catalog are designed according to use in industrial compressed air systems. If the products are used in conditions where pressure, temperature, etc., are out of specification, damage and/or malfunction may be caused. Do not use in these conditions. (Refer to the specifications.)
Consult SMC if you use a fluid other than compressed air.

## 11.Intermediate stops

When intermediate stopping of a cylinder piston is performed with a 3 position closed center type directional control valve, it is difficult to achieve stopping positions as accurate and precise as with hydraulic pressure due to the compressibility of air.
Furthermore, since valves and cylinders, etc., are not guaranteed for zero air leakage, it may not be possible to hold a stopped position for an extended period of time. Contact SMC in case it is necessary to hold a stopped position for an extended period.

## $\triangle$ Caution

1. Operate within the limits of the maximum usable stroke.
The piston rod will be damaged if operated beyond the maximum stroke. Refer to the air cylinder model selection procedure for the maximum usable stroke.
2. Operate the piston within a range such that collision damage will not occur at the stroke end.
Operate within a range such that damage will not occur when the piston having inertial force stops by striking the cover at the stroke end. Refer to the cylinder model selection procedure for the range within which damage will not occur.
3. Use a speed controller to adjust the cylinder drive speed, gradually increasing from a low speed to the desired speed setting.
4. Provide intermediate supports for long stroke cylinders.
Provide intermediate supports for cylinders with long strokes to prevent rod damage due to sagging of the rod, deflection of the tube, vibration and external loads, etc.
It is assumed the persons determining the stroke requirements have technical training and expertise in the design limitations of pneumatic equipment and are aware that death, personal injury, and property damage may result from the improper use of these products. Proper use is the users responsibity.

## Actuators

## Precautions 2

Be sure to read this before handling.

## Mounting

## $\triangle$ Caution

1. Be certain to align the rod axis with the load and direction of movement when connecting.
When not properly aligned, the rod and tube may be twisted, and damage may be caused due to wear on areas such as the inner tube surface, bushings, rod surface and seals.
2. When an external guide is used, connect the rod end and the load in such a way that there is no interference at any point within the stroke.
3. Do not scratch or gouge the sliding parts of the cylinder tube or piston rod, etc., by striking or grasping them with other objects.
Cylinder bores are manufactured to precise tolerances, so that even a slight deformation may cause malfunction. Also, scratches or gouges, etc., in the piston rod may lead to damaged seals and cause air leakage.
4. Prevent the seizure of rotating parts.

Prevent the seizure of rotating parts (pins, etc.) by applying grease.
5. Do not use until you can verify that equipment can operate properly.
Verify correct mounting by appropriate function and leakage inspections after compressed air and power are connected following mounting, maintenance or conversions.
6. Operating manual

The product should be mounted and operated after thoroughly reading the manual and understanding its contents.
Keep the operating manual where it can be referred to as needed.
7. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.
8. Wrapping of pipe tape

When screwing together pipes and fittings, etc., be certain that chips from the pipe threads and sealing material do not get inside the piping.
Also, when pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.


## Cushion

## $\triangle$ Caution

## 1. Readjust using the cushion needle.

Cushion is adjusted at the factory, however, the cushion needle on the cover should be readjusted when the product is put into service, based upon factors such as the size of the load and the operating speed. When the cushion needle is turned clockwise, the restriction becomes smaller and the cushion's effectiveness is increased. Tighten the lock nut securely after adjustment is performed.
2. Do not operate with the cushion needle in a fully closed condition.
This will cause damage to the seals.

## $\triangle$ Warning

1. Use clean air.

Do not use compressed air which includes chemicals, synthetic oils containing organic solvents, salt or corrosive gases, etc., as it can cause damage or malfunction.

## $\triangle$ Caution

## 1. Install air filters.

Install air filters at the upstream side of valves. The filtration degree should be $5 \mu \mathrm{~m}$ or finer.
2. Install an after-cooler, air dryer or water separator, etc.
Air that includes excessive drainage may cause malfunction of valves and other pneumatic equipment. To prevent this, install an after-cooler, air dryer or water separator, etc.
3. Use the product within the specified range of fluid and ambient temperature.
Take measures to prevent freezing, since moisture in circuits can be frozen below $5^{\circ} \mathrm{C}$, and this may cause damage to seals and lead to malfunction.
Refer to SMC "Best Pneumatics 2004" Vol. 14 catalog for further details on compressed air quality.

## Maintenance

## $\triangle$ Warning

1. Removal of equipment, and supply/exhaust of compressed air.
When equipment is removed, first check measures to prevent dropping of driven objects and run-away of equipment, etc. Then, cut off the supply pressure and electric power, and exhaust all compressed air from the system.
When machinery is restarted, proceed with caution after confirming measures to prevent cylinder from lurching.

## $\triangle$ Caution

## 1. Drain flushing

Remove drainage from air filters regularly. (Refer to the specifications.)

Auto Switches Precautions 1
Be sure to read this before handling.

## © Warning

## 1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the specification range for current load, voltage, temperature or impact.
We do not guarantee against any damage if the product is used outside of the specification range.
2. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch.
Also, perform periodic maintenance and confirm proper operation.
3. Do not make any modifications (including exchanging the printed circuit boards) to the product.
It may cause human injuries and accidents.

## $\triangle$ Caution

1. Pay attention to the length of time that a switch is ON at an intermediate stroke position.
When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate, but if the speed is too great the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

$$
\mathrm{V}(\mathrm{~mm} / \mathrm{s})=\frac{\text { Auto switch operating range }(\mathrm{mm})}{\text { Time load applied }(\mathrm{ms})} \times 1000
$$

In cases of high piston speed, the use of an auto switch (DF5NTL, F7NTL, G5NTL, M5NTL, M5PTL) with a built-in OFF delay timer ( $\approx 200 \mathrm{~ms}$ ) makes it possible to extend the load operating time.
The wide-range detection type D-G5NBL (operating range 35 to 50 mm ) may also be useful, depending on the application. Please consult with SMC for other models

## 2. Keep wiring as short as possible.

<Reed>
As the length of the wiring to a load gets longer, the rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time.)

1) Use a contact protection box when the wire length is 5 m or longer.
2) Even if an auto switch has a built-in contact protection circuit, when the wiring is more than 30 m long, it is not able to adequately absorb the rush current and its life may be reduced. It is again necessary to connect a contact protection box in order to extend its life. Please consult with SMC in this case.

## $\triangle$ Caution

<Solid state>
3) Although wire length should not affect switch function, use a wire 100 m or shorter.
If the wiring is longer it will likely increase noise although the length is less than 100 m
When the wire length is long, we recommend the ferrite core is attached to the both ends of the lead wire to prevent excess noise.
A contact protection box is not necessary for solid state switches due to the nature of this product construction
3. Do not use a load that generates surge voltage. If a surge voltage is generated, the discharge occurs at the contact, possibly resulting in the shortening of product life.
If driving a load such as a relay that generates a surge voltage,
<Reed>
Use an auto switch with built-in contact protection circuit or use a contact protection box.
<Solid state>
Use a built-in surge absorbing element type device.
4. Take precautions when multiple cylinders/actuators are used close together.
When multiple auto switch cylinders/actuators are used in close proximity, magnetic field interference may cause the auto switches to malfunction. Maintain a minimum cylinder separation of 40 mm . (When the allowable interval is specified for each cylinder series, use the indicated value.)
The auto switches may malfunction due to the interference from the magnetic fields.
Use of a magnetic screen plate (MU-S025) or commercially available magnetic screen tape can reduce the interference of magnetic force.
5. Pay attention to the internal voltage drop of the auto switch.
<Reed>

1) Auto switch with an indicator light (Except D-A56, A76H, A96, A96V, C76, E76A, Z76)

- If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance in the light emitting diodes. (Refer to the internal voltage drop in the auto switch specifications.) [The voltage drop will be " n " times larger when " n " auto switches are connected.]
Even though an auto switch operates normally, the load may not operate.

- In the same way, when operating under a specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.



## Design / Selection

## $\triangle$ Caution

2) If the internal resistance of a light emitting diode causes a problem, select an auto switch without an indicator light (DA6■, A80, A80H, A90, A90V, C80, R80, 90, E80A, Z80).

## <Solid state/2-wire type>

3) Generally, the internal voltage drop will be greater with a 2 wire solid state auto switch than with a reed auto switch. Take the same precautions as in 1).
Also, take note that a 12 VDC relay is not applicable.
6. Pay attention to leakage current. <Solid state/2-wire type>
Current (leakage current) flows to the load to operate the internal circuit when in the OFF state.

Operating current of load (OFF condition) > Leakage current
If the criteria given in the above formula are not met, it will not reset correctly (stays ON). Use a 3-wire auto switch if this specification will not be satisfied.
Moreover, leakage current flow to the load will be " $n$ " times larger when " $n$ " auto switches are connected in parallel.
7. Ensure sufficient clearance for maintenance activities.
When designing an application, be certain to allow sufficient clearance for maintenance.
8. When multiple auto switches are required.
"n" indicates the number of auto switches which can be physically mounted on the cylinders/actuators. Detection intervals depends on the auto switch mounting structure and set position, therefore some required interval and set positions may not be available.

## 9. Limitations of detectable positioning

When using certain mounting brackets, the surface and position where an auto switch can be mounted maybe restricted due to physical interference. For example, when using some bracket types the auto switch cannot be surface mounted at the bottom side of foot bracket, etc.
Select the set position of the auto switch so that it does not interfere with the mounting bracket of the cylinders/actuators (such as trunnion or reinforcement ring).
10. Use the cylinder and auto switch in proper combination.
The auto switch is pre-adjusted to activate properly for an auto-switch-capable SMC cylinder/actuator.
If the auto switch is mounted improperly, used for another brand of cylinders/actuators or used after the alternation of the machine installation, the auto switch may not activate properly.

## Mounting / Adjustment

## $\triangle$ Caution

1. Do not drop or bump.

Do not drop, bump or apply excessive impacts ( $300 \mathrm{~m} / \mathrm{s}^{2}$ or more for reed auto switches and $1000 \mathrm{~m} / \mathrm{s}^{2}$ or more for solid state auto switches) while handling. Although the body of the auto switch may not be damaged, the inside of the auto switch could be damaged and cause malfunction.
2. Observe the proper tightening torque for mounting an auto switch.
When an auto switch is tightened beyond the range of tightening torque, auto switch mounting screws, auto switch mounting brackets or auto switch may be damaged.
On the other hand, tightening below the range of tightening torque may allow the auto switch to slip out of position.
3. Do not carry a cylinder by the auto switch lead wires.
Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the auto switch to be damaged by the stress.
4. Fix the auto switch with appropriate screw installed on the switch body. If using other screws, auto switch may be damaged.
5. Mount an auto switch at the center of the operating range. In the case of 2 -color display auto switch, mount it at the center of the green LED illuminating range.
Adjust the mounting position of the auto switch so that the piston stops at the center of the operating range. (The mounting position shown in the catalog indicates the optimum position at stroke end.)
If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable depending on the operating environment. Also there are some cylinders or actuators with individual setting methods for auto switches. If so, mount it in accordance with the indicated method.

Even if 2-color indication solid state auto switches are fixed at a proper operating range (the green light lights up), the operation may become unstable depending on the installation environment or magnetic field disturbance.
(Magnetic body, external magnetic field, proximal installation of cylinders with built-in magnet and actuators, temperature change, other factors for magnetic force fluctuation during operation, etc.)

## $\triangle$ Caution

## 1. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.
2. Do not wire with power lines or high voltage lines.
Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits containing auto switches may malfunction due to noise from these other lines.
3. Avoid repeatedly bending or stretching lead wires.
Broken lead wires will result from repeatedly applying bending stress or stretching force to the lead wires.
Stress and tensile force applied to the connection between the lead wire and auto switch increases the possibility of disconnection.
Keep the lead wire from moving especially in the area where it connects with the auto switch.

4. Be certain to connect the load before power is applied.
<2-wire type>
If the power is turned ON when an auto switch is not connected to a load, the auto switch will be instantly damaged because of excess current (short circuit).
It is the same as when the 2-wire brown lead wire (+, output) is directly connected to the (+) power supply terminal.

## 5. Do not allow short-circuit of loads.

## <Reed>

If the power is turned ON with a load in a short circuited condition, the auto switch will be instantly damaged because of excess current flow into the switch.

## <Solid state>

All models of D-J51, G5NB and PNP output type auto switches do not have built-in short circuit protection circuits. If a load is short circuited, the auto switch will be instantly damaged as in the case of reed auto switches.
Take special care to avoid reverse wiring with the brown power supply line and the black output line on 3-wire type auto switches.

## 6. Avoid incorrect wiring.

<Reed>
A 24 VDC auto switch with indicator light has polarity. The brown lead wire or terminal No. 1 is (+), and the blue lead wire or terminal No. 2 is $(-)$.
[For D-97, (+) is on the no-displayed side, $(-)$ is on the black line side.]

1) If connections are reversed, an auto switch will operate, however, the light emitting diode will not light up.
Also, take note that a current greater than that specified will damage a light emitting diode and it will no longer operate.
Applicable model:
D-A73, A73H, A73C, C73, C73C, E73A, Z73
D-R73, R73C, 97, 93A, A93, A93V
D-A33, A34, A33A, A34A, A44, A44A
D-A53, A54, B53, B54
2) When using a 2 -color indicator type auto switch (D-A79W, A59W and B59W), the auto switch will constantly remain ON if the connections are reversed.
<Solid state>
3) If connections are reversed on a 2-wire type auto switch, the auto switch will not be damaged if protected by a protection circuit, but the auto switch will always stay in an ON state. However, it is still necessary to avoid reversed connections, since the auto switch could be damaged by a load short circuit in this condition.
4) If connections are reversed (power supply line + and power supply line -) on a 3-wire type auto switch, the auto switch will be protected by a protection circuit. However, if the power supply line $(+)$ is connected to the blue wire and the power supply line ( - ) is connected to the black wire, the auto switch will be damaged.
7. When the lead wire sheath is stripped, confirm the stripping direction. The insulator may be split or damaged depending on the direction. (D-M9 $\square$ only)


Recommended Tool

Description	Model
Wire stripper	D-M9N-SWY

* Stripper for a round cable (ø2.0) can be used for a 2-wire type cable.

Auto Switches Precautions 4
Be sure to read this before handling.

## © Warning

1. Never use in an atmosphere of explosive gases.

The structure of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
Please contact SMC concerning ATEX compliant products.

## $\triangle$ Caution

1. Do not use in an area where a magnetic field is generated.
Auto switches will malfunction or magnets inside cylinders/actuators will become demagnetized. (Please consult with SMC if a magnetic field resistant auto switch can be used.)
2. Do not use in an environment where the auto switch will be continually exposed to water.
Although auto switches satisfy IEC standard IP67 construction except some models (D-A3 $\square, \mathrm{A} 44 \square$, G39 $\square$, K39 $\square$, RNK, RPK) do not use auto switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside auto switches may cause malfunction.
3. Do not use in an environment with oil or chemicals.
Please consult with SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.
4. Do not use in an environment with temperature cycles.
Please consult with SMC if auto switches are used where there are temperature cycles other than normal temperature changes, as there may be adverse effects inside the auto switches.
5. Do not use in an environment where there is excessive impact shock.
<Reed>
When excessive impact ( $300 \mathrm{~m} / \mathrm{s}^{2}$ or more) is applied to a reed auto switch during operation, the contact point will malfunction and generate or cut off a signal momentarily ( 1 ms or less). Please consult with SMC if a solid state auto switch can be used according to the environment.
6. Do not use in an area where surges are generated.

## <Solid state>

When there are units (solenoid type lifter, high frequency induction furnace, motor, radio equipment etc.) which generate a large amount of surge in the area around cylinders/actuators with solid state auto switches, this may cause deterioration or damage to the auto switch's internal circuit elements. Avoid sources of surge generation and disorganized lines.

## © Caution

7. Avoid accumulation of iron waste or close contact with magnetic substances.
When a large amount of iron waste such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with a cylinder with auto switches, or an actuator, it may cause the auto switch to malfunction due to a loss of the magnetic force inside the cylinder/actuator.
8. Please contact SMC concerning water resistance, elasticity of lead wires, usage at welding sites, etc.
9. Do not use in direct sunlight.
10. Do not mount the product in locations where it is exposed to radiant heat.

## Maintenance

## © Warning

## 1. Removal of equipment, and supply/exhaust of compressed air

Before any machinery or equipment is removed, first ensure that the appropriate measures are in place to prevent the fall or erratic movement of driven objects and equipment, then cut off the electric power and reduce the pressure in the system to zero. Only then should you proceed with the removal of any machinery and equipment.
When machinery is restarted, proceed with caution after confirming that appropriate measures are in place to prevent actuators from moving suddenly.

## © Caution

1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Secure and tighten auto switch mounting screws.

If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to lead wires.

To prevent faulty insulation, replace auto switches or repair lead wires, etc., if damage is discovered.
3) Confirm the display of the green light on the 2-color display auto switch.
Confirm that the piston stops at the center of the operating range (the green LED is on). If the red LED is on, the mounting position is not appropriate.
Readjust to the center of the operating range. Also there are some cylinders or actuators with individual setting methods for auto switches. If so, mount it in accordance with the indicated method.

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC) *1), and other safety regulations.


## © Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems. ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

## 1. The product is provided for use in manufacturing industries <br> The product herein described is basically provided for peaceful use in manufacturing industries. <br> If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary. <br> If anything is unclear, contact your nearest sales branch. <br> Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".
Read and accept them before using the product.

## Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered.*2)
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

## Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

## SMC Corporation

Akihabara UDX 15F,
4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN
Phone: 03-5207-8249 Fax: 03-5298-5362
http://www.smcworld.com
© 2011 SMC Corporation All Rights Reserved
Specifications are subject to change without prior notice

## ISO Cylinder [so Standard (15552) New

 $\varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

* Compared with the existing C96 series ( $\varnothing 40,100$ stroke)

By adopting a new cushion method (Air cushion + Bumper cushion), Cycle time shortened


Bumper cushion reduces the metal noise that occurs when piston stops


## New Series C96

## Weight reduced

Achieved weight reduction by changing rod cover shape and piston structure
(kg)

Bore size   $(\mathrm{mm})$	NewC96	Reduction rate
32	0.65	$13 \%$
40	0.96	$17 \%$
50	1.57	$13 \%$
63	1.94	$14 \%$
80	3.12	$13 \%$
100	4.03	$12 \%$

* Compared with the existing C96 series (ø40, 100 stroke)


## Air cushion + Bumper cushion

## Combined

 structure-The cushion stroke time can now be reduced with the double cushioning, which improves the cycle time.

- The bumper cushion reduces the metal noise that occurs when the piston stops at the end of the stroke.



Small sized auto switch can be attached.
Solid state: D-M9 $\square$
D-M9 $\square$ W
Reed: D-A9 $\square$

Improved handling performance
Auto switch mounting and mounting position adjustment can be made in a one way direction.



## Various mounting bracket options

## Mounting brackets can be combined according to the operating conditions.



With auto switch ${ }^{6}$
(Built-in magnet)

	Mounting •
B	Basic
L	Axial foot
F	Rod flange
G	Head flange
C	Single clevis
D	Double clevis
T	Center trunnion

* Mounting brackets are shipped together, (but not assembled). (except center trunnion type)

Bore size	
$\mathbf{3 2}$	32 mm
$\mathbf{4 0}$	40 mm
$\mathbf{5 0}$	50 mm
$\mathbf{6 3}$	63 mm
$\mathbf{8 0}$	80 mm
$\mathbf{1 0 0}$	100 mm

100100 mm

Cylinder stroke
(mm)

Refer to "Standard
Strokes" on page 4

- Number of auto switches

$\mathbf{N i l}$	2 pcs.
$\mathbf{S}$	1 pc.
$\mathbf{3}$	3 pcs.
$\mathbf{n}$	"n" pcs.

- Auto switch

Nil	Without auto switch

* For applicable auto switches, refer to the table below.

Air cushion on both ends + Bumper cushion

Applicable Auto Switches/Refer to the WEB catalog or the Best Pneumatics No. 2 for further information on auto switches.

** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance

* Lead wire length symbols: $0.5 \mathrm{~m} . . . . . .$. Nil (Example) M9NW
* Solid state auto switches marked with " $\bigcirc$ " are produced upon receipt of order.
$1 \mathrm{~m} . . . . . . .$. M (Example) M9NWM
$3 \mathrm{~m} . . . . . . .$. L (Example) M9NWL
$5 \mathrm{~m} . . . . . . . . \mathrm{Z}$ (Example) M9NWZ
* Since there are other applicable auto switches than listed above, refer to the WEB catalog or the Best Pneumatics No. 2 for details.
* For details about auto switches with pre-wired connector, refer to the WEB catalog or the Best Pneumatics No. 2.
* The D-A9■/M9■/M9■W/M9■A auto switches are shipped together, (but not assembled).
(However, only the auto switch mounting brackets are assembled before shipment.)


Minimum Stroke for Auto Switch Mounting
Refer to "Minimum Stroke for Auto Switch Mounting" on page 13.

Specifications

Bore size (mm)	32	40	50	63	80	100
Action	Double acting					
Fluid	Air					
Proof pressure	1.5 MPa					
Max. operating pressure	1.0 MPa					
Min. operating pressure	0.05 MPa					
Ambient and fluid temperature	Without auto switch: -20 to $70^{\circ} \mathrm{C}$ (No freezing) With auto switch : -10 to $60^{\circ} \mathrm{C}$ (No freezing)					
Lubrication	Not required (Non-lube)					
Operating piston speed	50 to $1000 \mathrm{~mm} / \mathrm{s}$					
Allowable stroke tolerance	Up to 500 stroke: ${ }_{0}^{+2}, 501$ to 1000 stroke: ${ }_{0}^{+2.4}$, 1001 to 1500 stroke: ${ }_{0}^{+2.8}, 1501$ to 2000 stroke: ${ }_{0}^{+3.2}$					
Cushion	Air cushion on both ends + Bumper cushion					
Port size	G1/8	G1/4	G1/4	G3/8	G3/8	G1/2
Mounting	Basic, Axial foot, Rod flange, Head flange, Single clevis, Double clevis, Center trunnion					

## Standard Strokes

Bore size   $(\mathrm{mm})$	Standard stroke   $(\mathrm{mm})$	Max.   stroke ${ }^{\text {Note })}$
$\mathbf{3 2}$	$25,50,80,100,125,160,200,250,320,400,500$	1000
$\mathbf{4 0}$	$25,50,80,100,125,160,200,250,320,400,500$	1900
$\mathbf{5 0}$	$25,50,80,100,125,160,200,250,320,400,500,600$	1900
$\mathbf{6 3}$	$25,50,80,100,125,160,200,250,320,400,500,600$	1900
$\mathbf{8 0}$	$25,50,80,100,125,160,200,250,320,400,500,600,700,800$	1900
$\mathbf{1 0 0}$	$25,50,80,100,125,160,200,250,320,400,500,600,700,800$	1900

Intermediate strokes are available.
Note) Please consult with SMC for longer strokes.

## Accessories

Mounting		Basic	Foot	Rod   flange	Head   flange	Single   clevis	Double   clevis	Center   trunnion
Standard	Rod end nut	$\bullet$						
	Clevis pin	-	-	-	-	-	$\bullet$	-
Option	Piston rod ball joint	$\bullet$						
	Rod clevis	$\bullet$						
	Rod boot	$\bullet$						

* Do not use a piston rod ball joint (or floating joint) together with a single clevis with a ball joint (or clevis pivot bracket with a ball joint).


## Series <br> C96

Theoretical Output
$\longrightarrow$ OUT

(N)

$\begin{aligned} & \text { Bore } \\ & \text { size } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { Rod size } \\ & (\mathrm{mm}) \end{aligned}$	Operating direction	$\begin{gathered} \text { Piston } \\ \text { area } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$	Operating pressure ( MPa )								
				0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
32	12	OUT	804	161	241	322	402	482	563	643	724	804
		IN	691	138	207	276	346	415	484	553	622	691
40	16	OUT	1257	251	377	503	629	754	880	1006	1131	1257
		IN	1056	211	317	422	528	634	739	845	950	1056
50	20	OUT	1963	393	589	785	982	1178	1374	1570	1767	1963
		IN	1649	330	495	660	825	989	1154	1319	1484	1649
63	20	OUT	3117	623	935	1247	1559	1870	2182	2494	2805	3117
		IN	2803	561	841	1121	1402	1682	1962	2242	2523	2803
80	25	OUT	5027	1005	1508	2011	2514	3016	3519	4022	4524	5027
		IN	4536	907	1361	1814	2268	2722	3175	3629	4082	4536
100	25	OUT	7854	1571	2356	3142	3927	4712	5498	6283	7068	7854
		IN	7363	1473	2209	2945	3682	4418	5154	5890	6627	7363

Note) Theoretical output ( N ) = Pressure (MPa) x Piston area ( $\mathrm{mm}^{2}$ )

## Weights

Bore size (mm)		32	40	50	63	80	100
Basic weight	Basic	0.43	0.64	1.09	1.42	2.32	3.15
	Foot	0.16	0.20	0.38	0.46	0.89	1.09
	Flange	0.20	0.23	0.47	0.58	1.30	1.81
	Single clevis	0.16	0.23	0.37	0.60	1.07	1.73
	Double clevis	0.20	0.32	0.45	0.71	1.28	2.11
	Trunnion	0.71	1.10	1.73	2.48	4.25	5.95
Additional weight per 50 mm of stroke	All mounting brackets	0.11	0.16	0.24	0.26	0.40	0.44
Accessories	Piston rod ball joint	0.07	0.11	0.22		0.40	
	Rod clevis	0.09	0.15	0.34		0.69	

Calculation: Example) C96SD40-100C

- Basic weight ............................. 0.64 (kg) (Basic, ø40)
- Additional weight
. 0.16 (kg/50 st)
- Cylinder stroke $\qquad$ 100 (st)
- Mounting bracket weight .......... 0.32 (kg) (Double clevis)


## Allowable Kinetic Energy


(Example) Find the upper limit of rod end load when an air cylinder of $\varnothing 63$ is operated at $500 \mathrm{~mm} / \mathrm{s}$. From a point indicating $500 \mathrm{~mm} / \mathrm{s}$ on the axis of abscissas, extend a line upward and find a point where it intersects with a line for the 63 mm bore size. Extend a line from the intersection to the left and find a load mass 80 kg .



Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Rod cover	Aluminum die-cast	
2	Head cover	Aluminum die-cast	
3	Cylinder tube	Aluminum alloy	
4	Piston rod	Carbon steel	
5	Piston	Aluminum alloy	$ø 32$ to ø63
		Aluminum die-cast	$\varnothing 80, \varnothing 100$
6	Cushion ring A	Aluminum alloy	
7	Cushion ring B	Aluminum alloy	
8	Cushion seal holder	Aluminum alloy	
9	Tie-rod	Carbon steel	
10	Tie-rod nut	Steel	
11	Flat washer	Steel	$ø 80, \varnothing 100$
12	Rod end nut	Steel	
13	Cushion valve	Resin	
14	Bushing	Bearing alloy	
15	Cushion seal	Urethane	
16	Bumper	Urethane	
17	Wear ring	Resin	
18	Piston seal	NBR	
19	Rod seal	NBR	
20	Cylinder tube gasket	NBR	
21	Cushion valve seal	NBR	
22	Magnet		

Replacement Parts/Seal Kit (Single rod)

Bore size (mm)	Kit no.	Contents
$\mathbf{3 2}$	CS95-32	
$\mathbf{4 0}$	CS95-40	
$\mathbf{5 0}$	CS95-50	Kits include items
$\mathbf{6 3}$	CS95-63	
$\mathbf{8 0}$	CS95-80	
$\mathbf{1 0 0}$	CS96-100	

* Seal kits consist of items (15), (17), (18), (19), (20) and can be ordered by using the seal kit number corresponding to each bore size.
* The seal kit includes a grease pack ( 10 g for $\varnothing 32$ to $\varnothing 50,20 \mathrm{~g}$ for $\varnothing 63$ and $\varnothing 80,30 \mathrm{~g}$ for $\varnothing 100$ ).
Order with the following part number when only the grease pack is needed.
Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)


## Series C96

Dimensions

## Basic: C96S (D) B Bore size - Stroke C


(mm)

$\begin{gathered} \text { Bore } \\ \text { size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)	A	$\begin{aligned} & \ominus \mathbf{B} \\ & \mathbf{d} 11 \end{aligned}$	BG	øD	E	EE	G	H	KK	L2	L8	L9	L12	PL	R	RT	SL	SW	VA	VD	WA	WB	WH	ZZ
32	Up to 1000	22	30	16	12	47	G 1/8	28.9	48	M10 x 1.25	15	94	4	6	13	32.5	M6 x 1	8	10	4	4	4	7	26	146
40	Up to 1900	24	35	16	16	54	G $1 / 4$	32.6	54	M12 $\times 1.25$	17	105	4	6.5	14	38	M6 $\times 1$	8	13	4	4	5	8.9	30	163
50	Up to 1900	32	40	16	20	66	G 1/4	32	69	M16 $\times 1.5$	24	106	5	8	14	46.5	M8 $\times 1.25$	-	17	4	4	6	5.1	37	179
63	Up to 1900	32	45	16	20	77	G 3/8	38.6	69	M16 $\times 1.5$	24	121	5	8	16	56.5	M8 $\times 1.25$	-	17	4	4	9	6.3	37	194
80	Up to 1900	40	45	17	25	99	G 3/8	38.4	86	M20 $\times 1.5$	30	128	-	10	16	72	M10 $\times 1.5$	-	22	4	4	11.5	6	46	218
100	Up to 1900	40	55	17	25	118	G 1/2	42.9	91	M20 x 1.5	32	138	-	10	18	89	M10 $\times 1.5$	-	22	4	4	17	10	51	233

Axial foot (L)


## Center trunnion ( $\mathbf{T}$ )


$4 \times$ FB

## Rod flange (F)



Bore   size   $(\mathrm{mm})$	$\mathbf{E}_{\mathbf{1}}$	TR	AH	AO	$\mathbf{A T}$	$\mathbf{A B}$	$\mathbf{S A}$	$\mathbf{X A}$
$\mathbf{3 2}$	48	32	32	10	4.5	7	142	144
$\mathbf{4 0}$	55	36	36	11	4.5	10	161	163
$\mathbf{5 0}$	68	45	45	12	5.5	10	170	175
$\mathbf{6 3}$	80	50	50	12	5.5	10	185	190
$\mathbf{8 0}$	100	63	63	14	6.5	12	210	215
$\mathbf{1 0 0}$	$\mathbf{1 2 0}$	75	71	16	6.5	14.5	220	230


Bore   size   $(\mathbf{m m})$	$\mathbf{T M}$	TL	TD   e8	$\mathbf{U W}$	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{X V}$	$\mathbf{Z}$
$\mathbf{3 2}$	50	12	12	49	17	73	95
$\mathbf{4 0}$	63	16	16	58	22	82.5	106.5
$\mathbf{5 0}$	75	16	16	71	22	90	122
$\mathbf{6 3}$	90	20	20	87	28	97.5	129.5
$\mathbf{8 0}$	110	20	20	110	34	110	150
$\mathbf{1 0 0}$	132	25	25	136	40	120	160


Bore   size   $(\mathbf{m m})$	$\mathbf{R}$	TF	FB	$\mathbf{E}_{\mathbf{2}}$	$\mathbf{U F}$	$\mathbf{W}$	$\mathbf{M F}$
$\mathbf{3 2}$	32	64	$\mathbf{7}$	50	79	16	10
$\mathbf{4 0}$	36	72	9	55	90	20	10
$\mathbf{5 0}$	45	90	9	70	110	25	12
$\mathbf{6 3}$	50	100	9	80	120	25	12
$\mathbf{8 0}$	63	126	12	100	153	30	16
$\mathbf{1 0 0}$	75	150	14	120	178	35	16


	$(\mathrm{mm})$	
Bore   size   $(\mathrm{mm})$	MF	ZF
$\mathbf{3 2}$	10	130
$\mathbf{4 0}$	10	145
$\mathbf{5 0}$	12	155
$\mathbf{6 3}$	12	170
$\mathbf{8 0}$	16	190
$\mathbf{1 0 0}$	16	205


Bore   size   $(\mathrm{mm})$	EW	CD   H9	L	MR	XD	UB   h14	CB   H14	EB
$\mathbf{3 2}$	$26_{-0.6}^{-0.2}$	10	12	9.5	142	45	26	65
$\mathbf{4 0}$	$28_{-0.6}^{-0.2}$	12	15	12	160	52	28	75
$\mathbf{5 0}$	$32_{-0.6}^{-0.2}$	12	15	12	170	60	32	80
$\mathbf{6 3}$	$40_{-0.6}^{-0.2}$	16	20	16	190	70	40	90
$\mathbf{8 0}$	$50_{-0.6}^{-0.2}$	16	20	16	210	90	50	110
$\mathbf{1 0 0}$	$60_{-0.6}^{-0.2}$	20	25	20	230	110	60	140

Series C96
Accessories

## Axial foot (L)



Bore   size   $(\mathrm{mm})$	Part no.	$\mathbf{A B}$	TG   $\pm 0.2$	$\mathbf{E}$	$\mathbf{T R}$	$\mathbf{A O}$	$\mathbf{A U}$	$\mathbf{A H}$	$\mathbf{A T}$	$\mathbf{R 2}$	Screw size
$\mathbf{3 2}$	L 5032	7	32.5	48	32	10	24	32	4.5	15	$\mathrm{M} 6 \times 16 \mathrm{~L}$
$\mathbf{4 0}$	L 5040	10	38	55	36	11	28	36	4.5	17.5	$\mathrm{M} 6 \times 16 \mathrm{~L}$
$\mathbf{5 0}$	$\mathbf{L 5 0 5 0}$	10	46.5	68	45	12	32	45	5.5	20	$\mathrm{M} 8 \times 20 \mathrm{~L}$
$\mathbf{6 3}$	L 5063	10	56.5	80	50	12	32	50	5.5	22.5	$\mathrm{M} 8 \times 20 \mathrm{~L}$
$\mathbf{8 0}$	L 5080	12	72	100	63	14	41	63	6.5	22.5	$\mathrm{M} 10 \times 20 \mathrm{~L}$
$\mathbf{1 0 0}$	$\mathbf{L 5 1 0 0}$	14.5	89	120	75	16	41	71	6.5	27.5	$\mathrm{M} 10 \times 20 \mathrm{~L}$

* Supplied with 4 mounting screws.

Flange (F, G)


Bore   size   $(\mathrm{mm})$	Part no.	$\mathbf{D}$   H11	$\varnothing$ FB	TG   $\pm 0.2$	E	$\mathbf{R}$	MF	TF	UF	$\mathbf{L 4}$	Screw size
$\mathbf{3 2}$	F5032	30	7	32.5	50	32	10	64	79	5	$\mathrm{M} 6 \times 20 \mathrm{~L}$
$\mathbf{4 0}$	F5040	35	9	38	55	36	10	72	90	5	$\mathrm{M} 6 \times 20 \mathrm{~L}$
$\mathbf{5 0}$	F5050	40	9	46.5	70	45	12	90	110	6.5	$\mathrm{M} 8 \times 20 \mathrm{~L}$
$\mathbf{6 3}$	F5063	45	9	56.5	80	50	12	100	120	6.5	$\mathrm{M} 8 \times 20 \mathrm{~L}$
$\mathbf{8 0}$	F5080	45	12	72	100	63	16	126	153	9	$\mathrm{M10} \mathrm{\times 25L}$
$\mathbf{1 0 0}$	F5100	55	14	89	120	75	16	150	178	9	$\mathrm{M} 10 \times 25 \mathrm{~L}$

* Supplied with 4 mounting screws.


## Single clevis (C)



Bore   size   $(\mathbf{m m})$	Part no.	$\mathbf{E}_{\mathbf{1}}$	$\mathbf{E W}$	$\mathbf{T G} \mathbf{1}$	$\mathbf{F L}$	$\boldsymbol{e}_{\mathbf{1}}$	$\mathbf{L}$	$\boldsymbol{\ell}_{\mathbf{2}}$	$\varnothing \mathbf{d}_{\mathbf{1}}$	$\varnothing \mathbf{C D}$	$\mathbf{M R}$	$\varnothing \mathbf{d}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}}$
$\mathbf{3 2}$	$\mathbf{C} 5032$	45	$26_{-0.6}^{-0.2}$	32.5	22	5	12	5.5	30	10	9.5	6.6	6.5
$\mathbf{4 0}$	$\mathbf{C} 5040$	51	$28_{-0.6}^{-0.2}$	38	25	5	15	5.5	35	12	12	6.6	6.5
$\mathbf{5 0}$	$\mathbf{C} 5050$	64	$32_{-0.6}^{-0.2}$	46.5	27	5	15	6.5	40	12	12	9	8.5
$\mathbf{6 3}$	$\mathbf{C 5 0 6 3}$	74	$40_{-0.6}^{-0.2}$	56.5	32	5	20	6.5	45	16	16	9	8.5
$\mathbf{8 0}$	$\mathbf{C} 5080$	94	$50_{-0.6}^{-0.2}$	72	36	5	20	10	45	16	16	11	11
$\mathbf{1 0 0}$	$\mathbf{C 5 1 0 0}$	113	$60_{-0.6}^{-0.2}$	89	41	5	25	10	55	20	20	11	12

* Supplied with 4 mounting screws.


## Double clevis (D)



$\begin{aligned} & \hline \text { Bore } \\ & \text { size } \\ & (\mathrm{mm}) \end{aligned}$	Part no.	TG1	FL	$\ell_{1}$	L	$\ell_{2}$	ød1	$\varnothing$ CD	MR	$ø \mathrm{~d}_{2}$	R1	E2	UB	CB
32	D5032	32.5	22	5	12	5.5	30	10	9.5	6.6	6.5	48	45	26
40	D5040	38	25	5	15	5.5	35	12	12	6.6	6.5	56	52	28
50	D5050	46.5	27	5	15	6.5	40	12	12	9	8.5	64	60	32
63	D5063	56.5	32	5	20	6.5	45	16	16	9	8.5	75	70	40
80	D5080	72	36	5	20	10	45	16	16	11	11	95	90	50
100	D5100	89	41	5	25	10	55	20	20	11	12	115	110	60

* Supplied with 4 mounting screws, clevis pin, and clevis pin bracket.


## Clevis pivot bracket (E)



Bore size (mm)	Part no.	ød2	øCK	øS5	K1	$\left.\begin{gathered} \mathbf{K}_{2} \\ (\text { Max. }) \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} \ell_{3} \\ (\text { Max. }) \end{array}\right\|$	$\mathrm{G}_{1}$	$\ell_{1}$	G2	EM	$\binom{\mathbf{G}_{3}}{(\text { Max. })}$	CA	H6	R1
32	E5032	11	10	6.6	38	51	10	21	7	18	26-0.6	31	32	8	10
40	E5040	11	12	6.6	41	54	10	24	9	22	$28_{-0.6}^{-0.2}$	35	36	10	11
50	E5050	15	12	9	50	65	12	33	11	30	$32_{-0.6}^{-0.2}$	45	45	12	12
63	E5063	15	16	9	52	67	14	37	11	35	$40_{-0.6}^{-0.2}$	50	50	12	15
80	E5080	18	16	11	66	86	18	47	12.5	40	$50_{-0.6}^{-0.2}$	60	63	14	15
100	E5100	18	20	11	76	96	20	55	13.5	50	$60_{-0.6}^{-0.2}$	70	71	15	19

Single clevis with ball joint (CS)


Bore size (mm)	Part no.	A	$\underset{(M a x .)}{\mathbf{B}}$	C	${ }_{6} \mathrm{D}_{\mathrm{H}}$	$\left\lvert\, \begin{gathered} \text { EN } \\ 0 \\ -0.1 \end{gathered}\right.$	$\begin{array}{\|c} \text { ER } \\ \text { (Max.) } \end{array}$	${ }^{6} \mathrm{~F} 411$	øE	L	øM	N	P	$\underset{ \pm 0.5}{\mathbf{H}}$
32	CS5032	32.5	10.5	22	10	14	15	30	6.6	45	10.5	5.5	5	-
40	CS5040	38	12	25	12	16	18	35	6.6	55	11	5.5	5	-
50	CS5050	46.5	15	27	16	21	20	40	9	65	15	6.5	5	51
63	CS5063	56.5	15	32	16	21	23	45	9	75	15	6.5	5	-
80	CS5080	72	18	36	20	25	27	45	11	95	18	10	5	70
100	CS5100	89	18	41	20	25	30	55	11	115	18	10	5	-

* Supplied with 4 mounting screws.


## Series C96

Dimensions: Pivot Brackets for Cylinder Mounting
Double clevis pivot bracket (DS)/for ES accessory



$\begin{aligned} & \text { Bore } \\ & \text { size } \\ & (\mathrm{mm}) \end{aligned}$	Part no.	E	B1	B2	B3	L1	TG1	T	$\begin{gathered} \ell_{1} \\ \text { (Min.) } \end{gathered}$	$\ell_{2}$	FL	$\begin{gathered} \mathbf{H} \\ (\text { Max. }) \end{gathered}$	$\varnothing d_{1}$	$\varnothing d_{2}$	$ø d_{3}$	${ }^{\text {¢ }}$ CN	$\left\lvert\, \begin{gathered} \text { SR } \\ (\text { Max. }) \end{gathered}\right.$	R
32	DS5032	45	14	34	3.3	11.5	32.5	3	5	5.5	22	10	30	10.5	6.6	10	11	17
40	DS5040	55	16	40	4.3	12	38	4	5	5.5	25	10	35	11	6.6	12	13	20
50	DS5050	65	21	45	4.3	14	46.5	4	5	6.5	27	12	40	15	9	16	18	22
63	DS5063	75	21	51	4.3	14	56.5	4	5	6.5	32	12	45	15	9	16	18	25
80	DS5080	95	25	65	4.3	16	72	4	5	10	36	16	45	18	11	20	22	30
100	DS5100	115	25	75	6.3	16	89	4	5	10	41	16	55	18	11	20	22	32

* Supplied with 4 mounting screws, clevis pin, and clevis pin bracket.


## Clevis pivot bracket with ball joint (ES)



$\begin{aligned} & \text { Bore } \\ & \text { size } \\ & (\mathrm{mm}) \end{aligned}$	Part no.	$ø d_{3}$	$\varnothing \mathrm{CN}$	${ }^{\prime} \mathrm{S} 5$	K1	$\begin{gathered} \mathbf{K}_{\mathbf{2}} \\ \text { (Max.) } \end{gathered}$	$\ell_{2}$	$\mathrm{G}_{1}$	G2	$\begin{gathered} \mathbf{G}_{3} \\ \text { (Max.) } \end{gathered}$	EN	EU	CH	H6	$\begin{gathered} \text { ER } \\ \text { (Max.) } \end{gathered}$
32	ES5032	11	10	6.6	38	51	8.5	21	18	31	14	10.5	32	10	15
40	ES5040	11	12	6.6	41	54	8.5	24	22	35	16	12	36	10	18
50	ES5050	15	16	9	50	65	10.5	33	30	45	21	15	45	12	20
63	ES5063	15	16	9	52	67	10.5	37	35	50	21	15	50	12	23
80	ES5080	18	20	11	66	86	11.5	47	40	60	25	18	63	14	27
100	ES5100	18	20	11	76	96	12.5	55	50	70	25	18	71	15	30

Floating joint: JA


(mm)

Bore size (mm)	Part no.	M	A	B	C	øD	E	F	G	H	P	U	Load (kN)	Weight (g)	Angle
32	JA30-10-125	M10 x 1.25	49.5	19.5	-	24	5	8	8	17	9	0.5	2.5	70	$\pm 0.5^{\circ}$
40	JA40-12-125	M12 $\times 1.25$	60	20	-	31	6	11	11	22	13	0.75	4.4	160	
50, 63	JA50-16-150	M16 $\times 1.5$	71.5	22	-	41	7.5	14	13.5	27	15	1	11	300	
80, 100	JAH50-20-150	M20 $\times 1.5$	101	28	31	59.5	11.5	24	16	32	18	2	18	1080	

* Black color

Rod clevis: GKM (ISO 8140)


Bore size   $(\mathrm{mm})$	Part no.	$\mathbf{e}$	$\mathbf{b}$	$\mathbf{d}$	øf h11   (Shaft)	of н9   (Hole)	$\boldsymbol{e}_{\mathbf{1}}$	$\mathbf{c}$   $($ Min. $)$	$\mathbf{a}$   $($ Max. $)$
$\mathbf{3 2}$	GKM10-20	M10 1.25	$10_{+0.15}^{+0.5}$	40	10	10	52	20	20
$\mathbf{4 0}$	GKM12-24	M12 $\times 1.25$	$12_{+0.15}^{+0.5}$	48	12	12	62	24	24
$\mathbf{5 0 , 6 3}$	GKM16-32	M16 $\times 1.5$	$16_{+0.15}^{+0.5}$	64	16	16	83	32	32
$\mathbf{8 0 , 1 0 0}$	GKM20-40	M20 $\times 1.5$	$20_{+0.15}^{+0.5}$	80	20	20	105	40	40

* Supplied with clevis pin and clevis pin bracket.

Piston rod ball joint: KJ (ISO 8139)


Bore size   $(\mathrm{mm})$	Part no.	$\mathbf{d}_{\mathbf{3}}$	$\varnothing \mathbf{d}_{1}$ н9	$\mathbf{h}$	$\mathbf{d}_{6}$   $($ Max. $)$	$\mathbf{b}_{1} \mathbf{~ h 1 2 ~}$	$\boldsymbol{\ell}$   $($ Min. $)$	$\alpha$	$\boldsymbol{\ell}_{\mathbf{3}}$
$\mathbf{3 2}$	KJ10D	M10 $\times 1.25$	10	43	28	14	20	$4^{\circ}$	15
$\mathbf{4 0}$	KJ12D	M12 $\times 1.25$	12	50	32	16	22	$4^{\circ}$	17
$\mathbf{5 0 , 6 3}$	KJ16D	M16 $\times 1.5$	16	64	42	21	28	$4^{\circ}$	23
$\mathbf{8 0 , 1 0 0}$	KJ20D	M20 $\times 1.5$	20	77	50	25	33	$4^{\circ}$	27

Series C96
Auto Switch Mounting
Minimum Stroke for Auto Switch Mounting


Note) $n=3,4,5 \ldots$

Auto switch model	Number of auto switches	Center trunnion					
		ø32	ø40	ø50	ø63	$ø 80$	$\varnothing 100$
$\begin{aligned} & \text { D-M9 } \\ & \text { D-M9 } \square \text { W } \end{aligned}$	With 1 pc.   With 2 pcs.   (Different surfaces, Same surface)	75			85	90	95
	With n pcs.	$\begin{aligned} & 75+40(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$			$\begin{aligned} & 85+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 90+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 95+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$
$\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \mathbf{W V} \end{aligned}$	With 1 pc .   With 2 pcs.   (Different surfaces, Same surface)	50	55		60	65	70
	With n pcs.	$\begin{aligned} & 50+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 55+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 60+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 65+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 70+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$
D-M9 $\square$ A	With 1 pc .   With 2 pcs.   (Different surfaces, Same surface)	80			85	95	100
	With n pcs.	$\begin{aligned} & 80+40(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$			$\begin{aligned} & 85+40(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 95+40(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{gathered} 100+40(n-2) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$
D-M9■AV	With 1 pc .   With 2 pcs.   (Different surfaces, Same surface)	55			65	70	75
	With n pcs.	$\begin{aligned} & 55+30(n-2) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$			$\begin{aligned} & 65+30(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 70+30(n-2) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 75+30(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$
D-A9 $\square$	With 1 pc .   With 2 pcs.   (Different surfaces, Same surface)	70	75		80	85	95
	With n pcs.	$\begin{aligned} & 70+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 75+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 80+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 85+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 95+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$
D-A9 ${ }^{\text {V }}$	With 1 pc .   With 2 pcs.   (Different surfaces, Same surface)	45	50		55	60	70
	With n pcs.	$\begin{aligned} & 45+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 50+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 55+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 60+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 70+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$
$\begin{aligned} & \text { D-G39 } \\ & \text { D-K39 } \\ & \text { D-A3 } \end{aligned}$	With 2 pcs.   (Different surfaces)	60	65		75	80	85
	With 2 pcs. (Same surface)	90	95		100	105	110
	With $n$ pcs. (Different surfaces)	$\begin{aligned} & 60+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 65+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$		$\begin{aligned} & 75+30(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 80+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 85+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$
	With $n$ pcs. (Same surface)	$\begin{gathered} 90+100(n-2) \\ n=2,4,6,8 \cdots \end{gathered}$	$\begin{gathered} 95+100(n-2) \\ n=2,4,6,8 \cdots \end{gathered}$		$\begin{gathered} 100+100(n-2) \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$	$\begin{gathered} 105+100(n-2) \\ n=2,4,6,8 \cdots \end{gathered}$	$\begin{gathered} 110+100(n-2) \\ n=2,4,6,8 \cdots \end{gathered}$
	With 1 pc.	60	65		75	80	85
D-A44	With 2 pcs. (Different surfaces)	70			75	80	85
	With 2 pcs. (Same surface)	70			75	80	85
	With $n$ pcs. (Different surfaces)	$\begin{aligned} & 70+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$			$\begin{aligned} & 75+30(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 80+30(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 85+30(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$
	With $n$ pcs. (Same surface)	$\begin{aligned} & 70+50(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$			$\begin{aligned} & 75+50(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 80+50(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 85+50(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$
	With 1 pc.	70			75	80	85
$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \end{aligned}$	With 1 pc .   With 2 pcs.   (Different surfaces, Same surface)	60		80	95	105	110
	With n pcs. (Same surface)	$\begin{aligned} & 60+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 80+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 95+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{gathered} 105+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{gathered} 110+55(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$
D-A59W	With 2 pcs.   (Different surfaces, Same surface)	60	70	85	105	110	115
	With n pcs. (Same surface)	$\begin{aligned} & 60+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 70+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 85+55(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{gathered} 105+55(n-4) / 2 \\ n=4,8,12,16 \ldots \end{gathered}$	$\begin{gathered} 110+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{gathered} 115+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$
	With 1 pc.	60	70	85	105	110	115
$\begin{aligned} & \text { D-F5 } \\ & \text { D-J5 } \end{aligned}$	With 2 pcs.   (Different surfaces, Same surface)	90	95		100	110	115
$\begin{aligned} & \text { D-F5■W } \\ & \text { D-J59W } \\ & \text { D-F5BA } \end{aligned}$	With $n$ pcs. (Same surface)	$\begin{aligned} & 90+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 95+55(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$		$\begin{aligned} & 100+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{gathered} 110+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{gathered} 115+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$
D-F59F	With 1 pc.	90	95		100	110	115
D-F5NT	With 2 pcs.   (Different surfaces, Same surface)	100	105		110	120	125
	With n pcs. (Same surface)	$\begin{gathered} 100+55(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	$\begin{gathered} 105+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$		$\begin{gathered} 110+55(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	$\begin{gathered} 120+55(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	$\begin{gathered} 125+55(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$
	With 1 pc.	100	105		110	120	125
$\begin{aligned} & \text { D-Y59 } \\ & \text { D-Y7P } \\ & \text { D-Y7H } \\ & \text { D-Y7DW } \\ & \text { D-Z7 } \\ & \text { D-Z80 } \\ & \hline \end{aligned}$	With 1 pc .   With 2 pcs.   (Different surfaces, Same surface)	75	80		85	95	100
	With n pcs. (Same surface)	$\begin{aligned} & 75+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 80+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$		$\begin{aligned} & 85+40(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 95+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{gathered} 100+40(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$
$\begin{aligned} & \text { D-Y69 } \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$	With 1 pc .   With 2 pcs.   (Different surfaces, Same surface)	55			60	70	75
	With n pcs. (Same surface)	$\begin{aligned} & 55+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$			$\begin{aligned} & 60+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 70+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 75+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$
D-Y7BA	With 1 pc .   With 2 pcs.   (Different surfaces, Same surface)	85	90		100	105	110
	With $n$ pcs. (Same surface)	$\begin{aligned} & 85+45(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 90+45(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{gathered} 100+45(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{aligned} & 105+45(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 110+45(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$
D-P4DW	With 1 pc.   With 2 pcs.   (Different surfaces, Same surface)	110			115	125	130
	With $n \mathrm{pcs}$. (Same surface)	$\begin{gathered} 110+65(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$			$\begin{gathered} 115+65(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{gathered} 125+65(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{gathered} 130+65(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$

Note) $n=3,4,5 \ldots$

## Series C96

## Auto Switch Proper Mounting Position (Detection at stroke end) and Its Mounting Height



Auto Switch Proper Mounting Position

	$\begin{aligned} & \text { D-M9■ } \\ & \text { D-M9 } \\ & \text { D-M9 } \square \text { A } \end{aligned}$		$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$		$\begin{aligned} & \text { D-Y59 } \\ & \text { D-Y69 } \\ & \text { D-Y7P } \\ & \text { D-Y7H } \\ & \text { D-Y7■W } \\ & \text { D-Y7BA } \\ & D-Z 7 \square \\ & D-Z 80 \end{aligned}$		D-P4DW		$\begin{aligned} & \text { D-G39 } \\ & \text { D-K39 } \\ & \text { D-A3 } \square \\ & \text { D-A44 } \\ & \text { D-A5 } \square \\ & \text { D-A6 } \end{aligned}$		$\begin{aligned} & \text { D-F5 } \square \\ & \text { D-J5 } \square \\ & \text { D-F59F } \end{aligned}$		D-J51		D-A59W		D-F5NT	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B
32	14	10.5	10	6.5	7.5	4	7	3.5	4	0	10.5	7	10	6.5	8	4.5	15.5	12
40	14	14	10	10	7.5	7.5	7	7	4	4	10.5	10.5	10	10	8	8	15.5	15.5
50	15.5	14.5	11.5	10.5	9	8	8.5	7.5	5.5	4.5	12	11	11.5	10.5	9.5	8.5	17	16
63	16.5	15.5	12.5	11.5	10	9	9.5	8.5	6.5	5.5	13	12	12.5	11.5	10.5	9.5	18	17
80	21.5	18	17.5	14	15	11.5	14.5	11	11.5	8	18	14.5	17.5	14	15.5	12	23	19.5
100	21.5	19	17.5	15	15	12.5	14.5	12	11.5	9	18	15.5	17.5	15	15.5	13	23	20.5

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting Height
mm)

Auto switch model Bore size	$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \text { A } \\ & \text { D-A9 } \end{aligned}$		D-A9 $\square$ V		$\begin{aligned} & \text { D-M9■V } \\ & \text { D-M9■WV } \\ & \text { D-M9■AV } \end{aligned}$		$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A59W } \end{aligned}$		D-F5   D-J5   D-F59F   D-F5 $\square$ W   D-J59W   D-F5BA   D-F5NT		$\begin{aligned} & \text { D-G39 } \\ & \text { D-K39 } \\ & \text { D-A3 } \end{aligned}$		D-A44		$\begin{aligned} & \text { D-Y59■ } \\ & \text { D-Y7P } \\ & \text { D-Y7■W } \\ & \text { D-Y7BA } \\ & \text { D-Z7■ } \\ & \text { D-Z80 } \end{aligned}$		$\begin{aligned} & \text { D-Y69 } \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$		D-P4DW	
	Hs	Ht																		
32	24.5	23	27.5	23	30.5	23	35	24.5	32.5	25	67	27.5	77	27.5	25.5	23	26.5	23	38	31
40	28.5	25.5	31.5	25.5	34	25.5	38.5	27.5	36.5	27.5	71.5	27.5	81.5	27.5	29.5	26	30	26	42	33
50	33.5	31	36	31	38.5	31	43.5	34.5	41	34	77	-	87	-	33.5	31	34.5	31	46.5	39
63	38.5	36	40.5	36	43	36	48.5	39.5	46	39	83.5	-	93.5	-	39	36	40	36	51.5	44
80	46.5	45	49	45	52	45	55	46.5	52.5	46.5	92.5	-	103	-	47.5	45	48.5	45	58	51.5
100	54	53.5	57	53.5	59.5	53.5	62	55	59.5	55	103	-	113.5	-	55.5	53.5	56.5	53.5	65.5	60.5

## Auto Switch Mounting Brackets／Part No．

Auto switch model	Bore size（mm）					
	$ø 32$	$\varnothing 40$	$\varnothing 50$	ø63	$\varnothing 80$	$\varnothing 100$
$\begin{aligned} & \text { D-M9 } \square / \text { M9 } \square \text { V } \\ & \text { D-M9 } \square \text { W/M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { A/M9 } \square \text { AV } \\ & \text { D-A9 } \square \text { A9 } \square V \end{aligned}$	BMB5－032	BMB5－032	BA7－040	BA7－040	BA7－063	BA7－063
$\begin{aligned} & \text { D-G39/K39 } \\ & \text { D-A3 } \square / A 44 \end{aligned}$	BMB2－032	BMB2－040	BMB1－050	BMB1－063	BMB1－080	BMB1－100
D－F5 $\square / J 5 \square$   D－F5 $\square$ W／J59W   D－F59F   D－F5BA   D－F5NT   D－A5 $\square /$ A6 $\square$   D－A59W	BT－03	BT－03	BT－05	BT－05	BT－06	BT－06
D－P4DW	BMB3T－040	BMB3T－040	BMB3T－050	BMB3T－050	BMB3T－080	BMB3T－080
D－Y59■／Y69■   D－Y7P／Y7PV   D－Y7ロW   D－Y7ロWV   D－Y7BA   D－Z7ロ／Z80	BMB4－032	BMB4－032	BMB4－050	BMB4－050	BA4－063	BA4－063


－Mounting example for D－A9 $\square(\mathrm{V})$ ， M9 $\square(\mathrm{V})$ ，M9 $\square \mathrm{W}(\mathrm{V})$ ，M9 $\square \mathrm{A}(\mathrm{V})$

## ［Stainless Steel Mounting Screw］

The following stainless steel mounting screw kit（including set screws）is available．Use it in accordance with the operating environment．（Since the auto switch mounting bracket is not included，order it separately．）

BBA1：For D－A5／A6／F5／J5
Note 1）For details on BBA1，refer to page 20.
The D－F5BA auto switch is set on the cylinder with the stainless steel screws above when shipped from factory．
When only an auto switch is shipped independently，the BBA1 is attached．
Note 2）When using the D－M9 $\square \mathrm{A}(\mathrm{V})$ or Y7BA，please do not use the iron set screws included with the auto switch mounting bracket（BMB5－032，BA7－$\square \square \square$ ，BMB4－$\square \square \square$ ，BA4－$\square \square \square$ ）shown above，instead order the set of stainless steel set screws（BBA1），and please use the stainless steel set screws（M4 $\times 6 \mathrm{~L}$ ）included in BBA1．

## Operating Range

Auto switch model	Bore size					
	32	40	50	63	80	100
D－M9 $\square / M 9 \square$ V D－M9 W／M9 $\square$ WV D－M9 $\square$ A／M9 AV	4	4.5	5	6	6	6
D－A9 $\square /$ A9 $\square \mathrm{V}$	7	7.5	8.5	9.5	9.5	10.5
$\begin{aligned} & \text { D-Y59■/Y69■ } \\ & \text { D-Y7P/Y7■V } \\ & \text { D-Y7 } \square W / Y 7 \square W V \\ & \text { D-Y7BA } \end{aligned}$	5.5	5.5	7	7.5	6.5	5.5
D－Z7口／Z80	7.5	8.5	7.5	9.5	9.5	10.5
D－F5 $\square / J 5 \square$   D－F5 $\square$ W／J59W   D－F5BA／F5NT   D－F59F	3.5	4	4	4.5	4.5	4.5
D－A5 $\square /$ A6 $\square$	9	9	10	11	11	11
D－A59W	13	13	13	14	14	15
D－G39／K39	9	9	9	10	10	11
D－A3■／A44	9	9	10	11	11	11
D－P4DW	4	4	4	4.5	4	4.5

＊Values which include hysteresis are for guideline purposes only，they are not a guarantee（assuming approximately $\pm 30 \%$ dispersion）and may change substantially depending on the ambient environment．

## Series C96

Type	Part no.	Electrical entry	Features
Sold state	D-M9NV, M9PV, M9BV	Grommet (Perpendicular)	-
	D-Y69A, Y69B, Y7PV		
	D-M9NWV, M9PWV, M9BWV		Diagnostic indication (2-color indication)
	D-Y7NWV, Y7PWV, Y7BWV		
	D-M9NAV, M9PAV, M9BAV		Water resistant (2-color indication)
	D-Y59A, Y59B, Y7P	Grommet (In-line)	-
	D-F59, F5P, J59		
	D-Y7NW, Y7PW, Y7BW		Diagnostic indication (2-color indication)
	D-F59W, F5PW, J59W		
	D-F5BA, Y7BA		Water resistant (2-color indication)
	D-F5NT		With timer
	D-P5DW		Magnetic field resistant (2-color indication)
Reed	D-A93V, A96V	Grommet (Perpendicular)	-
	D-A90V		Without indicator light
	D-A67, Z80	Grommet (In-line)	
	D-A53, A56, Z73, $\mathbf{Z 7 6}$		-
* Normally closed For details, refer   * With pre-wired	contact) solid state auto switches WEB catalog or the Best Pneumati is also available for solid state aut	H/Y7G/Y7H) are also availa   For details, refer to the	og or the Best Pneumatics No. 2.

## How to Mount and Move the Auto Switch

## Mounting Bracket Tie-rod Mounting Type

<Applicable Auto Switch><br>Solid state switch ... D-G39, D-K39<br>Reed switch D-A33, D-A34, D-A44

How to Mount and Move the Auto Switch


1. Loosen the auto switch mounting screws at both sides to pull down the hook.
2. Put an auto switch mounting band on the cylinder tube and set it at the auto switch mounting position, and then hook the band.
3. Screw lightly the auto switch mounting screw (M5 x $0.8 \times 16 \mathrm{~L}$ ).
4. Set the whole body to the detecting position by sliding, tighten the mounting screw ( $\mathrm{M} 5 \times 0.8 \times 16 \mathrm{~L}$ ) to secure the auto switch. (The tightening torque should be about 2 to $3 \mathrm{~N} \cdot \mathrm{~m}$.)
5. When changing the detecting position, carry out in the state of 3 .

## Auto Switch Mounting Bracket Part No. (Band)

Cylinder   series	Applicable bore size (mm)					
	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
$\mathbf{C 9 6}$	BMB2	BMB2	BMB1	BMB1	BMB1	BMB1
	-032	-040	-050	-063	-080	-100

## <Applicable Auto Switch>

Solid state switch ... D-M9N(V), D-M9P(V), D-M9B(V) D-M9NW(V), D-M9PW(V), D-M9BW(V) D-M9NA(V), D-M9PA(V), D-M9BA(V)
Reed switch $\qquad$ D-A90(V), A93(V), A96(V)

## How to Mount and Move the Auto Switch



1. Fix it to the detecting position with a set screw by installing an auto switch mounting bracket in cylinder tie-rod and letting the bottom surface of an auto switch mounting bracket contact the cylinder tube firmly.
2. Fix it to the detecting position with a set screw (M4). (Use a hexagon wrench.)
3. Fit an auto switch into the auto switch mounting groove to set it roughly to the mounting position for an auto switch
4. After confirming the detecting position, tighten up the mounting screw (M2.5 $\times 0.45 \times 4 \mathrm{~L}$ ) attached to an auto switch, and secure the auto switch.
5. When changing the detecting position, carry out in the state of 3 .

Note 1) To protect auto switches, ensure that main body of an auto switch should be embedded into auto switch mounting groove with a depth of 15 mm or more.
Note 2) Set the tightening torque of a hexagon socket head set screw (M4) to be 1.0 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$.
Note 3) When tightening an auto switch mounting screw (M2.5), use a watchmaker's screwdriver with a grip diameter of 5 to 6 mm .
Also, set the tightening torque to be 0.05 to $0.15 \mathrm{~N} \cdot \mathrm{~m}$. As a guide, turn $90^{\circ}$ from the position where it comes to feel tight.

## Auto Switch Mounting Bracket Part No.

(Including Bracket, Set Screw)

Cylinder	Applicable bore size (mm)					
	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
$\mathbf{C 9 6}$	BMB5	BMB5	BA7	BA7	BA7	BA7
	-032	-032	-040	-040	-063	-063

Note 1) When using the D-M9■A(V), please order stainless steel screw set BBA1 separately (page 20), and use the stainless steel set screws, after selecting set screws of the appropriate length for the cylinder series-as shown in the table above.
Note 2) Color or gloss differences in the metal surfaces have no effect on metal performance.
The special properties of the chromate (trivalent) applied to the main body of the auto switch mounting bracket for BA7- $\square$ and BMB5- $\square$ result in differences in coloration depending on the production lot, but these have no adverse impact on corrosion resistance.

## Mounting Bracket Tie-rod Mounting Type

<Applicable Auto Switch><br>Solid state switch ... D-Y59A, Y69 ${ }_{\mathrm{B}}^{\mathrm{A}, ~ D-Y 7 P(V) ~}$ D-Y7NW(V), Y7PW(V), Y7BW(V) D-Y7BA<br>Reed switch D-Z73, Z76, Z80

How to Mount and Move the Auto Switch


Note 1) When tightening an auto switch mounting screw, use a watchmaker's screwdriver with a handle diameter of 5 to 6 mm . Also, set the tightening torque to be 0.05 to $0.1 \mathrm{~N} \cdot \mathrm{~m}$.
As a guide, turn $90^{\circ}$ from the position where it comes to feel tight. Set the tightening torque of a hexagon socket head set screw (M4 x $0.7 \times 6 \mathrm{~L}$ ) to be 1.0 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$.

1. Fix it to the detecting position with a set screw by installing an auto switch mounting bracket in cylinder tie-rod and letting the bottom surface of an auto switch mounting bracket contact the cylinder tube firmly. (Use a hexagon wrench.)
2. Fit an auto switch into the auto switch mounting groove to set it roughly to the mounting position for an auto switch.
3. After confirming the detecting position, tighten up the mounting screw attached to an auto switch, and secure the auto switch.
4. When changing the detecting position, carry out in the state of 2 .

* To protect auto switches, ensure that main body of an auto switch should be embedded into auto switch mounting groove with a depth of 15 mm or more.


## Auto Switch Mounting Bracket Part No. (Including Bracket, Set Screw)

Cylinder   series	Applicable bore size (mm)					
	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
$\mathbf{C 9 6}$	BMB4	BMB4	BMB4	BMB4	BA4	BA4
	-032	-032	-050	-050	-063	-063

Note 2) When using the D-Y7BA, please order stainless steel screw set BBA1 separately (page 20), and use the stainless steel set screws, after selecting set screws of the appropriate length for the cylinder series - as shown in the table above.

## <Applicable Auto Switch> <br> Solid state switch ... D-P4DW

## How to Mount and Move the Auto Switch



1. Slightly screw the hexagon socket head cap screw (M4 $\times 0.7 \times 8 \mathrm{~L}$ ) into the M4 tapped portion of auto switch mounting bracket. (2 locations) Use caution that the tip of the hexagon socket head cap screw should not stick out to the concave portion of auto switch mounting bracket.
2. Put a hexagon socket head cap screw (M3 $\times 0.5 \times 14 \mathrm{~L}$ ) through the auto switch's through-hole (2 locations), and then push it down into the M3 tapped part on the auto switch mounting bracket while turning it lightly.
3. Place the concave part of the auto switch mounting bracket into the cylinder tie-rod, and slide the auto switch mounting bracket in order to set roughly to the detecting position.
4. After reconfirming the detecting position, tighten the M3 mounting screw to secure the auto switch by making the bottom face of auto switch attached to the cylinder tube. (Tightening torque of M3 screw should be 0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$.)
5. Tighten up M4 screw of auto switch mounting bracket to secure the auto switch mounting bracket. (Ensure that tightening torque of M4 screw should be set 1.0 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$.)

## Auto Switch Mounting Bracket Part No. <br> (Including Bracket, Screw)

Cylinder   series	Applicable bore size (mm)						
	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	
C96	BMB3T	BMB3T	BMB3T	BMB3T	BMB3T	BMB3T	
	-040	-040	-050	-050	-080	-080	

## Mounting Bracket Tie-rod Mounting Type

## <Applicable Auto Switch>

Solid state switch ... D-F59, D-F5P
D-J59, D-J51, D-F5BA
D-F59W, D-F5PW, D-J59W
D-F59F, D-F5NT
Reed switch D-A53, D-A54, D-A56, D-A64, D-A67 D-A59W

1. Fix the auto switch on the auto switch mounting bracket with the auto switch mounting screw (M4) and install the set screw (M4).
2. Fit the auto switch mounting bracket into the cylinder tie-rod and then fix the auto switch at the detecting position with a set screw (M4).
(Be sure to put the auto switch on the surface of cylinder tube.) (Use a hexagon wrench.)
3. When changing the detecting position, loosen the set screw to move the auto switch and then re-fix the auto switch on the cylinder tube. (Tightening torque of M4 screw should be 1.0 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$.)

## Auto Switch Mounting Bracket Part No. (Including Bracket, Screw, Set Screw)



Cylinder	Applicable bore size (mm)					
series	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
C96	BT-03	BT-03	BT-05	BT-05	BT-06	BT-06

The following stainless steel mounting screw kit (including set screws) is available. Use it in accordance with the operating environment. (Since the auto switch mounting bracket is not included, order it separately.)
BBA1: For D-A5/A6/F5/J5
The D-F5BA auto switch is set on the cylinder with the stainless steel screws above when shipped from factory.
When only an auto switch is shipped independently, the BBA1 is attached.

## Stainless Steel Mounting Screw Set

Part no.	Contents				Applicable auto switch mounting bracket part no.	Applicable auto switch
	No.	Description	Size	Q'ty		
BBA1	1	Auto switch mounting screw	$\mathrm{M} 4 \times 0.7 \times 8 \mathrm{~L}$	1	BT-प口	
	2	Set screw	M $4 \times 0.7 \times 6 \mathrm{~L}$	2	$\begin{aligned} & \text { BT-03, BT-04, BT-05 } \\ & \text { BT-0, BT-08, BT-12 } \end{aligned}$	D-F5, J5
					BA4-040, BA4-063, BA4-080 BMB4-032, BMB4-050	$\begin{aligned} & \hline \mathrm{D}-\mathrm{Z7}, \mathrm{Z8} \\ & \mathrm{D}-\mathrm{Y5}, \mathrm{Y} 6, \mathrm{Y} 7 \end{aligned}$
					$\begin{aligned} & \text { BMB5-032 } \\ & \text { BA7-040, BA7-063, BA7-080 } \end{aligned}$	$\begin{aligned} & \hline \text { D-A9 } \\ & \text { D-M9 } \end{aligned}$
	3	Set screw	M $4 \times 0.7 \times 8 \mathrm{~L}$	2	BT-16, BT-18A, BT-20	$\begin{aligned} & \text { D-A5, A6 } \\ & \text { D-F5, J5 } \end{aligned}$
					$\begin{aligned} & \text { BS4-125, BS4-160 } \\ & \text { BS4-180, BS4-200 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{D}-\mathrm{Z7}, \mathrm{Z8} \\ & \mathrm{D}-\mathrm{Y}, \mathrm{Y}, \mathrm{Y}, \mathrm{Y} \end{aligned}$
					$\begin{aligned} & \text { BS5-125, BS5-160 } \\ & \text { BS5-180, BS5-200 } \end{aligned}$	$\begin{aligned} & \hline \text { D-A9 } \\ & \text { D-M9 } \end{aligned}$

[^4]
# Prior to Use <br> Auto Switch Connection and Example 

## Sink Input Specifications

3-wire, NPN


## 2-wire



Source Input Specifications
3-wire, PNP


2-wire


Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

## Example of AND (Series) and OR (Parallel) Connection

* When using solid state auto switches, ensure the application is set up so the signals for the first 50 ms are invalid.

3-wire AND connection for NPN output

## (Using relays)



3-wire AND connection for PNP output (Using relays)


## 2-wire AND connection



When two auto switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state. The indicator lights will light up when both of the auto switches are in the ON state. Auto switches with load voltage less than 20 V cannot be used.

Load voltage at $\mathrm{ON}=$ Power supply voltage -
Residual voltage $\times 2$ pcs.
$=24 \mathrm{~V}-4 \mathrm{~V} \times 2$ pcs.
$=16 \mathrm{~V}$
Example: Power supply is 24 VDC Internal voltage drop in auto switch is 4 V .
(Performed with auto switches only)

(Performed with auto switches only)


3-wire OR connection for NPN output


3-wire OR connection for PNP output


## 2-wire OR connection



Load voltage at OFF = Leakage current $\mathrm{x} 2 \mathrm{pcs} . \mathrm{x}$

$$
\begin{aligned}
& \text { Load impedance } \\
= & 1 \mathrm{~mA} \times 2 \text { pcs. } \times 3 \mathrm{k} \Omega \\
= & 6 \mathrm{~V}
\end{aligned}
$$

(Reed)
Because there is no current leakage, the load voltage will not increase when turned OFF. However, depending on the number of auto switches in the ON state, the indicator lights may sometimes grow dim or not light up, due to the dispersion and reduction of the current flowing to the auto switches.

Example: Load impedance is $3 \mathrm{k} \Omega$. Leakage current from auto switch is 1 mA .

# Series C96 Specific Product Precautions 

Be sure to read this before handling. Refer to the back cover for Safety Instructions. For Actuator and Auto Switch Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

## Adjustment

## © Warning

1. Do not open the cushion valve more than the allowable number of rotations (following table).
Although the cushion valve is caulked as a retaining mechanism, do not open the cushion valve more than the allowable number of rotations. If air is supplied and operation started without confirming the above condition, the cushion valve may be ejected from the cover.
The allowable number of rotations refers to the number of rotations until the restrictor of the cushion valve is completely opened from the completely closed state.
2. Keep the screwing torque and the unscrewing torque of the cushion valve to the allowable torque or below (following table).
If a screwing torque or unscrewing torque beyond the allowable torque is applied, the valve will be damaged when the valve is closed completely or exceeds the retaining mechanism when the valve is opened completely, which will dislocate the engagement of the screw and eject the valve.

Bore size   (mm)	Cushion valve   width across flats	Hexagon   wrench	Alowable number   of rotations	Allowable torque   (N.m)
$\mathbf{3 2 , 4 0}$	2	JIS 4648   Hexagon wrench key 2	4	0.02
$\mathbf{5 0 , 6 3}$	2	JIS 4648   Hexagon wrench key 2	4.5	0.02
$\mathbf{8 0 , 1 0 0}$	3	JIS 4648   Hexagon wrench key 3	5.5	0.06

3. Be certain to activate the air cushion at the stroke end.
When the air cushion is inactivated, if the allowable kinetic energy exceeds the value on page 5 , the piston rod assembly or the tie-rod may be damaged. Set the air cushion to valid when operating the cylinder.

## $\triangle$ Caution

1. When replacing brackets, use the hexagon wrenches shown below.

Bore size (mm)	Width across flats	Tightening torque (N.m)
$\mathbf{3 2 , 4 0}$	4	4.8
$\mathbf{5 0 , 6 3}$	5	10.4
$\mathbf{8 0}, \mathbf{1 0 0}$	6	18.2

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

## $\triangle$ Caution:

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

Warning indicates a hazard with a medium level of
Warning: risk which, if not avoided, could result in death or serious injury.

Danger indicates a hazard with a high level of risk
 which, if not avoided, will result in death or serious injury.

## $\triangle$ Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines.
(Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

## $\triangle$ Caution

1. The product is provided for use in manufacturing industries. The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

## Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".
Read and accept them before using the product.

## Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.

## *2) Vacuum pads are excluded from this 1 year warranty.

A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

## Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

CaUtion
SMC products are not intended for use as instruments for legal metrology.
Measurement instruments that SMC manufactures or sells have not been qualified
by type approval tests relevant to the metrology (measurement) laws of each
country. Therefore, SMC products cannot be used for business or certification
ordained by the metrology (measurement) laws of each country.

## ISO Cylinder ISO Standard (15552) New

 $\varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

* Compared with the existing CP96 series (ø40, 100 stroke)

By adopting a new cushion method (Air cushion + Bumper cushion), Cycle time shortened

$\square$ Bumper cushion reduces the metal noise that occurs when piston stops


## New Series CP96

## Weight reduced

Achieved weight reduction by changing rod cover shape and piston structure
(kg)

Bore size   $(\mathrm{mm})$	NewCP96	Reduction rate
32	0.74	$11 \%$
40	1.02	$15 \%$
50	1.74	$11 \%$
63	2.12	$12 \%$
80	3.40	$11 \%$
100	4.33	$11 \%$

* Compared with the existing CP96 series (ø40, 100 stroke)


## Air cushion + Bumper cushion

## Combined structure

- The cushion stroke time can now be reduced with the double cushioning, which improves the cycle time.
- The bumper cushion reduces the metal noise that occurs when the piston stops at the end of the stroke.




## Auto switch mounting

- Switch can be slid in for mounting.
- Groove for M9, A9 switches and CNOMO groove are on all four sides. Max. four sides, slide-in mountable

Auto switch can be slid in.
Mountable from both the head end and the rod end.


## Various mounting bracket options

Mounting brackets can be combined according to the operating conditions.



Applicable Auto Switches/Refer to the WEB catalog or the Best Pneumatics No. 2 for further information on auto switches.

Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model	Lead wire length (m)				Pre-wired connector	Applicable load	
					DC		AC		$\begin{aligned} & \hline 0.5 \\ & \text { (Nil) } \end{aligned}$	$\begin{gathered} 1 \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$			
Solid state auto switch	-	Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9N	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	IC	Relay, PLC
				3-wire (PNP)				M9P	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	circuit	
				2-wire		12 V		M9B	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	-	
	Diagnostic   indication   (2-color indication)	Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NW	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\begin{array}{\|c\|} \hline \text { IC } \\ \text { circuit } \\ \hline \end{array}$	
				3-wire (PNP)				M9PW	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$		
				2-wire		12 V		M9BW	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	-	
	Water resistant (2-color indication)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NA**	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\begin{array}{\|c\|} \hline \text { IC } \\ \text { circuit } \end{array}$	
				3-wire (PNP)				M9PA**	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$		
				2-wire		12 V		M9BA**	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	-	
읃등	-	Grommet	Yes	3-wire (NPN equivalent)	-	5 V	-	A96	$\bigcirc$	-	$\bigcirc$	-	-	$\begin{array}{\|c\|} \hline \text { IC } \\ \text { circuit } \end{array}$	-
$\stackrel{\pi}{0}$				2-wire	24 V	12 V	100 V	A93	$\bigcirc$	-	-	$\bigcirc$	-	-	Relay,PLC
			No				100 V or less	A90	$\bigcirc$	-	$\bigcirc$	-	-	$\begin{array}{c\|} \hline \text { IC } \\ \text { circuit } \end{array}$	

[^5]* Lead wire length symbols: 0.5 m ......... Nil (Example) M9NW
$1 \mathrm{~m} . . . . . . . . \mathrm{M}$ (Example) M9NWM
$3 \mathrm{~m} . . . . . . . \mathrm{L}$ (Example) M9NWL
$5 \mathrm{~m} . . . . . . . ~ Z ~(E x a m p l e) ~ M 9 N W Z ~$
* Since there are other applicable auto switches than listed above, refer to the WEB catalog or the Best Pneumatics No. 2 for details.
* For details about auto switches with pre-wired connector, refer to the WEB catalog or the Best Pneumatics No. 2.
* The D-A9 $\square /$ M9 $\square /$ M9 $\square W / M 9 \square A$ auto switches are shipped together, (but not assembled).
(However, only the auto switch mounting brackets are assembled before shipment.)
Note) The D-Y59A, Y69A, Y7P, Y7 $\square$ W, Z7ロ, Z80 cannot be mounted on the CP96 series.
Moreover, the D-M9 $\square \square$ and A9 $\square$ auto switches cannot be mounted on square groove of the CP96 series.


## Specifications



Bore size (mm)	32	40	50	63	80	100
Action	Double acting					
Fluid	Air					
Proof pressure	1.5 MPa					
Max. operating pressure	1.0 MPa					
Min. operating pressure	0.05 MPa					
Ambient and fluid temperature	Without auto switch: -20 to $70^{\circ} \mathrm{C}$ (No freezing)   With auto switch : -10 to $60^{\circ} \mathrm{C}$ (No freezing)					
Lubrication	Not required (Non-lube)					
Operating piston speed	50 to $1000 \mathrm{~mm} / \mathrm{s}$					
Allowable stroke tolerance	Up to 500 stroke: ${ }_{0}^{+2}, 501$ to 1000 stroke: ${ }_{0}^{+2.4}$, 1001 to 1500 stroke: ${ }_{0}^{+2.8}, 1501$ to 2000 stroke: ${ }_{0}^{+3.2}$					
Cushion	Air cushion on both ends + Bumper cushion					
Port size	G1/8	G1/4	G1/4	G3/8	G3/8	G1/2
Mounting	Basic, Axial foot, Rod flange, Head flange, Single clevis, Double clevis					

## Minimum Stroke for Auto Switch Mounting

Refer to "Minimum Stroke for Auto Switch Mounting" on page 13.

## Standard Strokes

Bore size   $(\mathrm{mm})$	Standard stroke   $(\mathrm{mm})$	Max.   stroke
$\mathbf{3 2}$	$25,50,80,100,125,160,200,250,320,400,500$	2000
$\mathbf{4 0}$	$25,50,80,100,125,160,200,250,320,400,500$	2000
$\mathbf{5 0}$	$25,50,80,100,125,160,200,250,320,400,500,600$	2000
$\mathbf{6 3}$	$25,50,80,100,125,160,200,250,320,400,500,600$	2000
$\mathbf{8 0}$	$25,50,80,100,125,160,200,250,320,400,500,600,700,800$	2000
$\mathbf{1 0 0}$	$25,50,80,100,125,160,200,250,320,400,500,600,700,800$	2000

Intermediate strokes are available.
Note) Please consult with SMC for longer strokes.

## Accessories

Mounting		Basic	Foot	Rod flange	Head flange	Single clevis	Double clevis
Standard	Rod end nut	-	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	Clevis pin	-	-	-	-	-	-
Option	Piston rod ball joint	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	Rod clevis	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	Rod boot	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$

* Do not use a piston rod ball joint (or floating joint) together with a single clevis with a ball joint (or clevis pivot bracket with a ball joint).


## Series CP96

Theoretical Output

(N)

Bore size   (mm)	Rod size (mm)	Operating direction	$\begin{array}{\|c\|} \hline \text { Piston } \\ \text { area } \\ \left(\mathrm{mm}^{2}\right) \end{array}$	Operating pressure ( MPa )								
				0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
32	12	OUT	804	161	241	322	402	482	563	643	724	804
		IN	691	138	207	276	346	415	484	553	622	691
40	16	OUT	1257	251	377	503	629	754	880	1006	1131	1257
		IN	1056	211	317	422	528	634	739	845	950	1056
50	20	OUT	1963	393	589	785	982	1178	1374	1570	1767	1963
		IN	1649	330	495	660	825	989	1154	1319	1484	1649
63	20	OUT	3117	623	935	1247	1559	1870	2182	2494	2805	3117
		IN	2803	561	841	1121	1402	1682	1962	2242	2523	2803
80	25	OUT	5027	1005	1508	2011	2514	3016	3519	4022	4524	5027
		IN	4536	907	1361	1814	2268	2722	3175	3629	4082	4536
100	25	OUT	7854	1571	2356	3142	3927	4712	5498	6283	7068	7854
		IN	7363	1473	2209	2945	3682	4418	5154	5890	6627	7363

Note) Theoretical output ( N ) = Pressure (MPa) x Piston area ( $\mathrm{mm}^{2}$ )

## Weights

Bore size (mm)		32	40	50	63	80	100
Basic weight	Basic	0.46	0.66	1.14	1.48	2.42	3.25
	Foot	0.16	0.20	0.38	0.46	0.89	1.09
	Flange	0.20	0.23	0.47	0.58	1.30	1.81
	Single clevis	0.16	0.23	0.37	0.60	1.07	1.73
	Double clevis	0.20	0.32	0.45	0.71	1.28	2.11
Additional weight per 50 mm of stroke	All mounting brackets	0.14	0.18	0.30	0.32	0.49	0.54
Accessories	Piston rod ball joint	0.07	0.11	0.22		0.40	
	Rod clevis	0.09	0.15	0.34		0.69	

Calculation: Example) CP96SD40-100C

- Basic weight. $\qquad$ 0.66 (kg) (Basic, ø40)
- Additional weight $\qquad$ . 0.18 (kg/50 st)
- Cylinder stroke . 100 (st)
- Mounting bracket weight .......... 0.32 (kg) (Double clevis)
$0.66+0.18 \times 100 \div 50+0.32=1.32 \mathrm{~kg}$


## Allowable Kinetic Energy


(Example) Find the upper limit of rod end load when an air cylinder of $\varnothing 63$ is operated at $500 \mathrm{~mm} / \mathrm{s}$. From a point indicating $500 \mathrm{~mm} / \mathrm{s}$ on the axis of abscissas, extend a line upward and find a point where it intersects with a line for the 63 mm bore size. Extend a line from the intersection to the left and find a load mass 80 kg .


Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Rod cover	Aluminum die-cast	
2	Head cover	Aluminum die-cast	
3	Cylinder tube	Aluminum alloy	
4	Piston rod	Carbon steel	
5	Piston	Aluminum alloy	$ø 32$ to ø63
		Aluminum die-cast	$\varnothing 80, \varnothing 100$
6	Cushion ring A	Aluminum alloy	
7	Cushion ring B	Aluminum alloy	
8	Cushion seal holder	Aluminum alloy	
9	Tie-rod	Carbon steel	
10	Tie-rod nut	Steel	
11	Flat washer	Steel	$ø 80, \varnothing 100$
12	Rod end nut	Steel	
13	Cushion valve	Resin	
14	Bushing	Bearing alloy	
15	Cushion seal	Urethane	
16	Bumper	Urethane	
17	Wear ring	Resin	
18	Piston seal	NBR	
19	Rod seal	NBR	
20	Cylinder tube gasket	NBR	
21	Cushion valve seal	NBR	
22	Magnet		

Replacement Parts/Seal Kit (Single rod)

Bore size (mm)	Kit no.	Contents
$\mathbf{3 2}$	CS95-32	
$\mathbf{4 0}$	CS95-40	
$\mathbf{5 0}$	CS95-50	
$\mathbf{6 3}$	CS95-63	
$\mathbf{8 0}$	CS95-80	
$\mathbf{1 0 0}$	CS96-100	

* Seal kits consist of items (15), (17), (18), (19), (20) and can be ordered by using the seal kit number corresponding to each bore size.
* The seal kit includes a grease pack ( 10 g for $\varnothing 32$ to $\varnothing 50,20 \mathrm{~g}$ for $\varnothing 63$ and $\varnothing 80,30 \mathrm{~g}$ for $\varnothing 100$ ).
Order with the following part number when only the grease pack is needed.
Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)


## Series CP96

Dimensions
Basic: CP96S (D) B Bore size - Stroke C


$\begin{gathered} \text { Bore } \\ \text { size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)	A	$\begin{aligned} & \varnothing \mathbf{B} \\ & \mathbf{d} 11 \end{aligned}$	BG	øD	E	EE	G	H	KK	L2	L8	L9	L12	PL	R	RT	SL	SW	VA	VD	WA	WB	WH	ZZ
32	Up to 2000	22	30	16	12	47	G 1/8	28.9	48	M10 x 1.25	15	94	4	6	13	32.5	M6 $\times 1$	8	10	4	4	4	7	26	146
40	Up to 2000	24	35	16	16	54	G 1/4	32.6	54	M12 $\times 1.25$	17	105	4	6.5	14	38	M6 x 1	8	13	4	4	5	8.9	30	163
50	Up to 2000	32	40	16	20	66	G 1/4	32	69	M16 x 1.5	24	106	5	8	14	46.5	M8 x 1.25	-	17	4	4	6	5.1	37	179
63	Up to 2000	32	45	16	20	77	G 3/8	38.6	69	M16 x 1.5	24	121	5	8	16	56.5	M8 x 1.25	-	17	4	4	9	6.3	37	194
80	Up to 2000	40	45	17	25	99	G 3/8	38.4	86	M20 x 1.5	30	128	-	10	16	72	M10 x 1.5	-	22	4	4	11.5	6	46	218
100	Up to 2000	40	55	17	25	118	G 1/2	42.9	91	M $20 \times 1.5$	32	138	-	10	18	89	M10 x 1.5	-	22	4	4	17	10	51	233

## Axial foot (L)



Bore   size   $(\mathbf{m m})$	$\mathbf{E}_{\mathbf{1}}$	TR	AH	AO	$\mathbf{A T}$	$\mathbf{A B}$	$\mathbf{S A}$	$\mathbf{X A}$
$\mathbf{3 2}$	48	32	32	10	4.5	7	142	144
$\mathbf{4 0}$	55	36	36	11	4.5	10	161	163
$\mathbf{5 0}$	68	45	45	12	5.5	10	170	175
$\mathbf{6 3}$	80	50	50	12	5.5	10	185	190
$\mathbf{8 0}$	100	63	63	14	6.5	12	210	215
$\mathbf{1 0 0}$	120	75	71	16	6.5	14.5	220	230

## Rod flange (F)



## Head flange (G)



		$(\mathrm{mm})$
Bore   size   $(\mathrm{mm})$	MF	ZF
$\mathbf{3 2}$	10	130
$\mathbf{4 0}$	10	145
$\mathbf{5 0}$	12	155
$\mathbf{6 3}$	12	170
$\mathbf{8 0}$	16	190
$\mathbf{1 0 0}$	16	205

## Single clevis (C) <br> Double clevis (D)

Single clevis (C)


Double clevis (D)

## Axial foot (L)



* Supplied with 4 mounting screws.

Flange (F, G)


## Single clevis (C)



$\begin{gathered} \hline \text { Bore } \\ \text { size } \\ (\mathrm{mm}) \end{gathered}$	Part no.	$E_{1}$	EW	TG1	FL	$\ell_{1}$	L	$\ell_{2}$	ød1	$\varnothing$ CD	MR	ød2	R1
32	C5032	45	$26_{-0.6}^{-0.2}$	32.5	22	5	12	5.5	30	10	9.5	6.6	6.5
40	C5040	51	$28_{-0.6}^{-0.2}$	38	25	5	15	5.5	35	12	12	6.6	6.5
50	C5050	64	$32_{-0.6}^{-0.2}$	46.5	27	5	15	6.5	40	12	12	9	8.5
63	C5063	74	$40_{-0.6}^{-0.2}$	56.5	32	5	20	6.5	45	16	16	9	8.5
80	C5080	94	$50_{-0.6}^{-0.2}$	72	36	5	20	10	45	16	16	11	11
100	C5100	113	$60_{-0.6}^{-0.2}$	89	41	5	25	10	55	20	20	11	12

[^6]
## Double clevis (D)



$\begin{aligned} & \text { Bore } \\ & \text { size } \\ & (\mathrm{mm}) \end{aligned}$	Part no.	TG1	FL	$\ell_{1}$	L	$\ell_{2}$	ød1	$\varnothing$ CD	MR	$ø \mathrm{~d}_{2}$	R1	E2	UB	CB
32	D5032	32.5	22	5	12	5.5	30	10	9.5	6.6	6.5	48	45	26
40	D5040	38	25	5	15	5.5	35	12	12	6.6	6.5	56	52	28
50	D5050	46.5	27	5	15	6.5	40	12	12	9	8.5	64	60	32
63	D5063	56.5	32	5	20	6.5	45	16	16	9	8.5	75	70	40
80	D5080	72	36	5	20	10	45	16	16	11	11	95	90	50
100	D5100	89	41	5	25	10	55	20	20	11	12	115	110	60

* Supplied with 4 mounting screws, clevis pin, and clevis pin bracket.


## Clevis pivot bracket (E)



$\begin{aligned} & \text { Bore } \\ & \text { size } \\ & (\mathrm{mm}) \end{aligned}$	Part no.	$ø \mathrm{~d}_{2}$	øCK	øS5	K1	$\left.\begin{array}{c} \mathbf{K}_{2} \\ (\text { Max. }) \end{array}\right)$	$\left(\begin{array}{c} e_{3} \\ (\text { Max. }) \end{array}\right.$	G1	$\ell_{1}$	$\mathrm{G}_{2}$	EM	$\left\|\begin{array}{c} \mathbf{G}_{3} \\ (\text { Max. }) \end{array}\right\|$	CA	H6	R1
32	E5032	11	10	6.6	38	51	10	21	7	18	26-0.6	31	32	8	10
40	E5040	11	12	6.6	41	54	10	24	9	22	$28_{-0.6}^{-0.2}$	35	36	10	11
50	E5050	15	12	9	50	65	12	33	11	30	$32_{-0.6}^{-0.2}$	45	45	12	12
63	E5063	15	16	9	52	67	14	37	11	35	$40_{-0.6}^{-0.2}$	50	50	12	15
80	E5080	18	16	11	66	86	18	47	12.5	40	$50_{-0.6}^{-0.2}$	60	63	14	15
100	E5100	18	20	11	76	96	20	55	13.5	50	$60_{-0.6}^{-0.2}$	70	71	15	19

Single clevis with ball joint (CS)


Bore size (mm)	Part no.	A	$\begin{array}{\|c\|} \hline \mathbf{B} \\ \text { (Max.) } \end{array}$	C	${ }^{\text {D }}$ D 77	$\begin{array}{\|c\|c\|c\|c\|} \hline \text { EN } \\ -0.1 \end{array}$	$\left.\begin{array}{\|c\|} \hline \text { ER } \\ \text { (Max.) } \end{array} \right\rvert\,$	${ }_{¢}{ }^{\text {H }} 11$	$ø$ E	L	øM	N	P	$\underset{ \pm 0.5}{\mathbf{H}}$
32	CS5032	32.5	10.5	22	10	14	15	30	6.6	45	10.5	5.5	5	-
40	CS5040	38	12	25	12	16	18	35	6.6	55	11	5.5	5	-
50	CS5050	46.5	15	27	16	21	20	40	9	65	15	6.5	5	51
63	CS5063	56.5	15	32	16	21	23	45	9	75	15	6.5	5	-
80	CS5080	72	18	36	20	25	27	45	11	95	18	10	5	70
100	CS5100	89	18	41	20	25	30	55	11	115	18	10	5	-

* Supplied with 4 mounting screws.


## Series CP96

Dimensions: Pivot Brackets for Cylinder Mounting
Double clevis pivot bracket (DS)/for ES accessory


(

Bore size (mm)	Part no.	E	B1	B2	B3	L1	TG1	T	$\begin{gathered} \ell_{1} \\ \text { (Min.) } \end{gathered}$	$\ell_{2}$	FL	$\underset{(M a x .)}{\mathbf{H}}$	$\varnothing d_{1}$	$ø \mathrm{~d}_{2}$	${ }_{\square} \mathrm{d}_{3}$	$\varnothing \mathrm{CN}$	$\left\lvert\, \begin{gathered} \text { SR } \\ \text { (Max.) } \end{gathered}\right.$	R
32	DS5032	45	14	34	3.3	11.5	32.5	3	5	5.5	22	10	30	10.5	6.6	10	11	17
40	DS5040	55	16	40	4.3	12	38	4	5	5.5	25	10	35	11	6.6	12	13	20
50	DS5050	65	21	45	4.3	14	46.5	4	5	6.5	27	12	40	15	9	16	18	22
63	DS5063	75	21	51	4.3	14	56.5	4	5	6.5	32	12	45	15	9	16	18	25
80	DS5080	95	25	65	4.3	16	72	4	5	10	36	16	45	18	11	20	22	30
100	DS5100	115	25	75	6.3	16	89	4	5	10	41	16	55	18	11	20	22	32

* Supplied with 4 mounting screws, clevis pin, and clevis pin bracket.


## Clevis pivot bracket with ball joint (ES)



Bore size   $(\mathrm{mm})$	Part no.	$\varnothing \mathbf{d}_{3}$	$\varnothing \mathbf{C N}$	$\varnothing \mathbf{S}_{5}$	$\mathbf{K}_{1}$	$\mathbf{K}_{2}$   $($ Max. $)$	$\boldsymbol{l}_{\mathbf{2}}$	$\mathbf{G}_{1}$	$\mathbf{G}_{2}$	$\mathbf{G}_{3}$   $(\mathrm{Max})$.	$\mathbf{E N}$	$\mathbf{E U}$	$\mathbf{C H}$	$\mathbf{\mathbf { H } _ { 6 }}$	$\mathbf{E R}$   $(\mathrm{Max})$.
$\mathbf{3 2}$	ES5032	11	10	6.6	38	51	8.5	21	18	31	14	10.5	32	10	15
$\mathbf{4 0}$	ES5040	11	12	6.6	41	54	8.5	24	22	35	16	12	36	10	18
$\mathbf{5 0}$	ES5050	15	16	9	50	65	10.5	33	30	45	21	15	45	12	20
$\mathbf{6 3}$	ES5063	15	16	9	52	67	10.5	37	35	50	21	15	50	12	23
$\mathbf{8 0}$	ES5080	18	20	11	66	86	11.5	47	40	60	25	18	63	14	27
$\mathbf{1 0 0}$	ES5100	18	20	11	76	96	12.5	55	50	70	25	18	71	15	30

Floating joint: JA

(mm)

Bore size (mm)	Part no.	M	A	B	C	$ø$ D	E	F	G	H	P	U	Load (kN)	Weight (g)	Angle
32	JA30-10-125	M10 $\times 1.25$	49.5	19.5	-	24	5	8	8	17	9	0.5	2.5	70	$\pm 0.5^{\circ}$
40	JA40-12-125	M12 $\times 1.25$	60	20	-	31	6	11	11	22	13	0.75	4.4	160	
50, 63	JA50-16-150	M16 x 1.5	71.5	22	-	41	7.5	14	13.5	27	15	1	11	300	
80, 100	JAH50-20-150	M20 $\times 1.5$	101	28	31	59.5	11.5	24	16	32	18	2	18	1080	

* Black color


## Rod clevis: GKM (ISO 8140)



$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Part no.	e	b	d	øf h 11 (Shaft)	øf ня (Hole)	$\ell_{1}$	$\underset{(\mathrm{Min} .)}{\mathbf{C}}$	$\begin{gathered} \mathbf{a} \\ \text { (Max.) } \end{gathered}$
32	GKM10-20	M10 $\times 1.25$	$10_{+0.15}^{+0.5}$	40	10	10	52	20	20
40	GKM12-24	M12 $\times 1.25$	$12_{+0.15}^{+0.5}$	48	12	12	62	24	24
50, 63	GKM16-32	M16 x 1.5	$16_{+0.15}^{+0.5}$	64	16	16	83	32	32
80, 100	GKM20-40	M20 x 1.5	$20_{+0.15}^{+0.5}$	80	20	20	105	40	40

* Supplied with clevis pin and clevis pin bracket.

Piston rod ball joint: KJ (ISO 8139)


Bore size   $(\mathrm{mm})$	Part no.	$\mathbf{d}_{3}$	$ø \mathbf{d}_{1} \mathbf{~ H 9}$	$\mathbf{h}$	$\mathbf{d}_{6}$   $($ Max. $)$	$\mathbf{b}_{1}$ h12	$\ell$   $($ Min. $)$	$\alpha$	$\boldsymbol{\ell}_{\mathbf{3}}$
$\mathbf{3 2}$	KJ10D	M10 $\times 1.25$	10	43	28	14	20	$4^{\circ}$	15
$\mathbf{4 0}$	KJ12D	M12 $\times 1.25$	12	50	32	16	22	$4^{\circ}$	17
$\mathbf{5 0 , 6 3}$	KJ16D	M16 $\times 1.5$	16	64	42	21	28	$4^{\circ}$	23
$\mathbf{8 0 , 1 0 0}$	KJ20D	M20 $\times 1.5$	20	77	50	25	33	$4^{\circ}$	27

Series CP96
Auto Switch Mounting

Minimum Stroke for Auto Switch Mounting

Auto switch model	Number of auto switches	32	40	50	63	80	100
$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \end{aligned}$	With 2 pcs. (Same surface)	50					
	With 1 pc./2 pcs. (Different surfaces)	10					
	With n pcs.	$10+40$ ( $\mathrm{n}-2$ )					
$\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \text { WV } \end{aligned}$	With 2 pcs. (Same surface)	40					
	With 1 pc./2 pcs. (Different surfaces)	10					
	With n pcs.	$10+30(\mathrm{n}-2)$					
D-M9 $\square$ A	With 2 pcs. (Same surface)	55	50				
	With 1 pc./2 pcs. (Different surfaces)	15	10				
	With n pcs.	$15+40(n-2)$	$10+40(\mathrm{n}-2)$				
D-M9 $\square$ AV	With 2 pcs. (Same surface)	40					
	With 1 pc./2 pcs. (Different surfaces)	10					
	With n pcs.	$10+30(\mathrm{n}-2)$					
D-A9 $\square$	With 2 pcs. (Same surface)	50					
	With 1 pc./2 pcs. (Different surfaces)	10					
	With n pcs.	$10+40(\mathrm{n}-2)$					
D-A9■V	With 2 pcs. (Same surface)	40					
	With 1 pc./2 pcs. (Different surfaces)	10					
	With n pcs.	$10+30(\mathrm{n}-2)$					

Note 1) $n=3,4,5 \cdots$
Note 2) The D-M9 $\square \mathrm{V} / \mathrm{M} 9 \square \mathrm{WV} / \mathrm{M} 9 \square \mathrm{AV} / \mathrm{A} 9 \square \mathrm{~V}$ are mountable on $\varnothing 32$ to $\varnothing 63$.

## Auto Switch Proper Mounting Position (Detection at stroke end)

Auto Switch Proper Mounting Position (mm)


	$\begin{aligned} & \text { D-M9 } \square(V) \\ & \text { D-M9 } \square \mathbf{W}(\text { V }) \\ & \text { D-M9 } \square \mathbf{A}(V) \end{aligned}$		D-A9 $\square$ (V)	
	A	B	A	B
32	14	10.5	10	6.5
40	14	14	10	10
50	15.5	14.5	11.5	10.5
63	16.5	15.5	12.5	11.5
80	21.5	18	17.5	14
100	21.5	19	17.5	15

Note 1) Adjust the auto switch after confirming the operating conditions in the actual setting.
Note 2) The D-M9 $\square \mathrm{V} / \mathrm{M} 9 \square \mathrm{WV} / \mathrm{M} 9 \square \mathrm{AV} / \mathrm{A9} \square \mathrm{~V}$ are mountable on $\varnothing 32$ to $\varnothing 63$.

## Operating Range

(mm)							
Auto switch   model	Bore size						
	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	
D-M9 $\square \mathbf{( V )}$   D-M9 $\square \mathbf{W}(V)$   D-M9 $\square \mathbf{A ( V ) ~}$	4	4	5	6	5.5	6	
D-A9 $\square(V)$	7	8	8.5	9.5	9.5	10.5	

* Values which include hysteresis are for guideline purposes only, they are not a guarantee (assuming approximately $\pm 30 \%$ dispersion) and may change substantially depending on the ambient environment.
Note) The D-M9 $\square \mathrm{V} / \mathrm{M} 9 \square \mathrm{WV} / \mathrm{M} 9 \square \mathrm{AV} / \mathrm{A} 9 \square \mathrm{~V}$ are mountable on $\varnothing 32$ to $\varnothing 63$.



## How to Mount and Move the Auto Switch

<Applicable Auto Switch>	
Solid state switch ...... D-M9N(V)/M9P(V)/M9B(V)	
	D-M9NW(V)/M9PW(V)/M9BW(V)
	D-M9NA(V)/M9PA(V)/M9BA(V)
Reed switch	D-A90(V)/A93(V)/A96(V)



- Use a watchmaker's screwdriver with a handle diameter of 5 to 6 mm when tightening the auto switch mounting screw.

Auto switch mounting screw tightening torque ( $\mathrm{N} \cdot \mathrm{m}$ )

Auto switch model	Tightening torque
D-M9 $\square \mathbf{( V )}$   D-M9 $\square \mathbf{W}(\mathbf{V})$   $\mathbf{D}-M 9 \square \mathbf{A ( V )}$	0.05 to 0.15
D-A9 $\square \mathbf{( V )}$	0.10 to 0.20

[^7]
# Prior to Use <br> Auto Switch Connection and Example 

## Sink Input Specifications

3-wire, NPN


## 2-wire



Source Input Specifications
3-wire, PNP


2-wire


Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

## Example of AND (Series) and OR (Parallel) Connection

* When using solid state auto switches, ensure the application is set up so the signals for the first 50 ms are invalid.

3-wire AND connection for NPN output

## (Using relays)



3-wire AND connection for PNP output (Using relays)


## 2-wire AND connection



When two auto switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state. The indicator lights will light up when both of the auto switches are in the ON state. Auto switches with load voltage less than 20 V cannot be used.

Load voltage at $\mathrm{ON}=$ Power supply voltage -
Residual voltage $\times 2$ pcs.
$=24 \mathrm{~V}-4 \mathrm{~V} \times 2$ pcs.
$=16 \mathrm{~V}$
Example: Power supply is 24 VDC Internal voltage drop in auto switch is 4 V .
(Performed with auto switches only)

(Performed with auto switches only)


3-wire OR connection for NPN output


3-wire OR connection for PNP output


## 2-wire OR connection



Load voltage at OFF = Leakage current $\mathrm{x} 2 \mathrm{pcs} . \mathrm{x}$

$$
\begin{aligned}
& \text { Load impedance } \\
= & 1 \mathrm{~mA} \times 2 \text { pcs. } \times 3 \mathrm{k} \Omega \\
= & 6 \mathrm{~V}
\end{aligned}
$$

(Reed)
Because there is no current leakage, the load voltage will not increase when turned OFF. However, depending on the number of auto switches in the ON state, the indicator lights may sometimes grow dim or not light up, due to the dispersion and reduction of the current flowing to the auto switches.

Example: Load impedance is $3 \mathrm{k} \Omega$. Leakage current from auto switch is 1 mA .

# Series CP96 Specific Product Precautions 

Be sure to read this before handling. Refer to the back cover for Safety Instructions. For Actuator and Auto Switch Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

## Adjustment

## $\triangle$ Warning

1. Do not open the cushion valve more than the allowable number of rotations (following table).

Although the cushion valve is caulked as a retaining mechanism, do not open the cushion valve more than the allowable number of rotations. If air is supplied and operation started without confirming the above condition, the cushion valve may be ejected from the cover.
The allowable number of rotations refers to the number of rotations until the restrictor of the cushion valve is completely opened from the completely closed state.
2. Keep the screwing torque and the unscrewing torque of the cushion valve to the allowable torque or below (following table).
If a screwing torque or unscrewing torque beyond the allowable torque is applied, the valve will be damaged when the valve is closed completely or exceeds the retaining mechanism when the valve is opened completely, which will dislocate the engagement of the screw and eject the valve.

Bore size   $(\mathrm{mm})$	Cushion valve   width across flats	Hexagon   wrench	Allowable number   of rotations	Allowable torque   (N.m)
$\mathbf{3 2 , 4 0}$	2	JIS 4648   Hexagon wrench key 2	4	0.02
$\mathbf{5 0 , 6 3}$	2	JIS 4648   Hexagon wrench key 2	4.5	0.02
$\mathbf{8 0 , 1 0 0}$	3	JIS 4648   Hexagon wrench key 3	5.5	0.06

3. Be certain to activate the air cushion at the stroke end.

When the air cushion is inactivated, if the allowable kinetic energy exceeds the value on page 5, the piston rod assembly or the tie-rod may be damaged. Set the air cushion to valid when operating the cylinder.

## $\triangle$ Caution

1. When replacing brackets, use the hexagon wrenches shown below.

Bore size $(\mathrm{mm})$	Width across flats	Tightening torque (N.m)
$\mathbf{3 2 , 4 0}$	4	4.8
$\mathbf{5 0 , 6 3}$	5	10.4
$\mathbf{8 0} \mathbf{1 0 0}$	6	18.2

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

## $\triangle$ Caution:

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

Warning indicates a hazard with a medium level of
Warning: risk which, if not avoided, could result in death or serious injury.

Danger indicates a hazard with a high level of risk
 which, if not avoided, will result in death or serious injury.

## $\triangle$ Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines.
(Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

## $\triangle$ Caution

1. The product is provided for use in manufacturing industries. The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

## Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".
Read and accept them before using the product.

## Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.

## *2) Vacuum pads are excluded from this 1 year warranty.

A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

## Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

CaUtion
SMC products are not intended for use as instruments for legal metrology.
Measurement instruments that SMC manufactures or sells have not been qualified
by type approval tests relevant to the metrology (measurement) laws of each
country. Therefore, SMC products cannot be used for business or certification
ordained by the metrology (measurement) laws of each country.


[^0]:    * Black color

[^1]:    * Please do not use a piston rod ball joint (or floating joint) together with a head end clevis with a ball joint (or angled head end clevis with a ball joint).

[^2]:    * Please do not use a piston rod ball joint (or floating joint) together with a head end clevis with a ball joint (or angled head end clevis with a ball joint).

[^3]:    * Since this is a guideline including hysteresis, not meant to be guaranteed.
    (Assuming approximately $\pm 30 \%$ dispersion.)
    There may be the case it will vary substantially depending on an ambient environment

[^4]:    Note) Use the set screw after selecting the appropriate length for the auto switch mounting bracket.
    (Example) When using the BA7-040, select the 6 L type. 8 L type is not required.

[^5]:    ** Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.

[^6]:    * Supplied with 4 mounting screws.

[^7]:    * As a guide, turn $90^{\circ}$ from the position where it comes to feel tight.

    Note 1) The D-M9 $\square$ and A9 $\square$ cannot be mounted on square groove of the CP96 series.
    Note 2) The D-M9 $\square \mathrm{V} / \mathrm{M} 9 \square \mathrm{WV} / \mathrm{M} 9 \square \mathrm{AV} / \mathrm{A} 9 \square \mathrm{~V}$ are mountable on $\varnothing 32$ to $\varnothing 63$.

